We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
368
1
avatar+78 

$ABCD$ is a square with $AB = 8$cm. Arcs $BC$ and $CD$ are semicircles. Express the area of the shaded region, in square centimeters, and in terms of $\pi$. 

 

 Jun 29, 2018
 #1
avatar+101252 
+2

Where the two semi-circles intersect  in the middle of the square, call this point  E

Connect EC

 

Let the midpoint of  DC  be F

So FC  and FE are radii of the top semi-circle    = 4 cm

And FE  is perpendicular to FC

 

So  CFE is a right triangle  ....and the area of this triangle  = (1/2)FE * FC   =

(1/2) (4) (4)  = 8  cm ^2

 

And  FC , FE  and  arc EC will form  sector FEC  of this top semicircle

And the area of this sector  = (1/2) FE^2 ( pi/2)  = (1/2)  4^2  (pi/2)  = 4  pi cm^2

 

So...the area of the sector  minus  the area of the triangle will  equal 1/2 of the shaded area  =

 

[ 4pi  - 8]  cm^2

 

So...the shaded area  =  2 [ 4pi - 8 ]  = [ 8pi  - 16 ]  cm^2 

 

 

cool cool cool

 Jun 29, 2018

17 Online Users

avatar
avatar
avatar
avatar
avatar