+0  
 
0
15
1
avatar+743 

A sector of a circle is shown below.  The sector has an area of $60 \pi.$  What is the radius of the circle?

 

 Apr 30, 2024

Best Answer 

 #1
avatar+9673 
+1

Recall the following formula:

The area of a sector with radius r and central angle \(\theta^\circ\) is \(\dfrac{\theta}{360} \cdot \pi r^2\).

Using the formula, we have

\(\dfrac{83}{360} \cdot \pi r^2 = 60 \pi\)

 

This means 

\(r^2 = \dfrac{360 \cdot 60}{83} = \dfrac{21600}{83}\)

\(r = \sqrt{\dfrac{21600}{83}} \approx 16.13\)

 Apr 30, 2024
 #1
avatar+9673 
+1
Best Answer

Recall the following formula:

The area of a sector with radius r and central angle \(\theta^\circ\) is \(\dfrac{\theta}{360} \cdot \pi r^2\).

Using the formula, we have

\(\dfrac{83}{360} \cdot \pi r^2 = 60 \pi\)

 

This means 

\(r^2 = \dfrac{360 \cdot 60}{83} = \dfrac{21600}{83}\)

\(r = \sqrt{\dfrac{21600}{83}} \approx 16.13\)

MaxWong Apr 30, 2024

0 Online Users