+0  
 
+5
513
2
avatar
A circle caontains a sector with an area of 75cm (sqaured) and a central angle of 270 (degrees). Determine the raduis of the circle to two decimal places
 Jan 25, 2016

Best Answer 

 #2
avatar+129847 
+5

Asector  = (1/2) r^2 (theta in radians)

 

75 = (1/2) r^2 (1.5 pi)

 

75 = (3/4)pi [r^2]    

 

75  = [.75)pi  [r^2]    divide both sides by .75pi

 

75 / [ .75 pi]  = r^2    

 

100/pi  = r^2       take the square root of both sides

 

10/ sqrt(pi)  = r  = about 5.64 cm

 

 

cool cool cool

 Jan 25, 2016
 #1
avatar
+5

270 is 3/4ths of a circle. 75 is 3/4ths of 100, so the whole circle is 100 square centimeters. pi*r^2 determines the area of a circle, so the answer is sqrt(100/pi), or 10sqrt(1/pi). The square root of pi is about 0.5641. Multiply by 10 and you get 5.64 (rounded) as the answer.

 Jan 25, 2016
 #2
avatar+129847 
+5
Best Answer

Asector  = (1/2) r^2 (theta in radians)

 

75 = (1/2) r^2 (1.5 pi)

 

75 = (3/4)pi [r^2]    

 

75  = [.75)pi  [r^2]    divide both sides by .75pi

 

75 / [ .75 pi]  = r^2    

 

100/pi  = r^2       take the square root of both sides

 

10/ sqrt(pi)  = r  = about 5.64 cm

 

 

cool cool cool

CPhill Jan 25, 2016

2 Online Users

avatar