+0  
 
+1
79
3
avatar+910 

 

 

I asked a question like this about perpendicular lines, and I just wanted to clarify if I did this right following the same procedures for the perpendicular line. 

 

f'(x) = 6x+1 

6x+1=4 

x = 2 

f(2) = 14 

(2,14) 

 

Is that correct?

Julius  Mar 5, 2018
Sort: 

3+0 Answers

 #1
avatar+86528 
+2

You have the correct idea....but a lttle mistake on the math

 

Derivative   =   6x  + 1

 

Set  =   to the slope of the line

 

6x + 1   =  4      

6x  = 3

x  =  3/6  = 1/2

 

And   y  =   3(1/2)^2  + 1/2   =  5/4

 

So.....the point  is   ( 1/2, 5/4)    and the equation of the line is

 

y  = 4(x - 1/2)  + 5/4

y = 4x - 2 + 5/4

y  = 4x - 3/4

 

Here's the graph, Julius : https://www.desmos.com/calculator/48aijjgr6d

 

 

cool cool cool

CPhill  Mar 5, 2018
 #2
avatar+910 
+1

Oh, my! How could I make such a mistake surprise

 

Thanks, CPhill! 

Julius  Mar 5, 2018
 #3
avatar+86528 
+1

No big deal....everyone makes mistakes.....

 

 

cool cool cool

CPhill  Mar 5, 2018

33 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy