Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
700
3
avatar

What are the zeros of f(x)=x^3+3x^2-4x-12?

 May 31, 2016

Best Answer 

 #1
avatar+102 
+5

we can factorize x^3-3x^2-4x+12. in fact: 

x^3-3x^2-4x+12 == x^2(x-3)-4(x-3) == (x^2-4)(x-3)== 
== (x+2) (x-2) (x-3) 

now 
x^3-3x^2-4x+12==0 iff (x+2) (x-2) (x-3)==0 
and 
(x+2) (x-2) (x-3)==0 iff 
(x+2)==0 or (x-2)==0 or (x-3)==0 

then 
the solution set is: 
S=={x1== -2, x2==2, x3==-3} 

hope this helps 
ciao ciao laugh

 May 31, 2016
 #1
avatar+102 
+5
Best Answer

we can factorize x^3-3x^2-4x+12. in fact: 

x^3-3x^2-4x+12 == x^2(x-3)-4(x-3) == (x^2-4)(x-3)== 
== (x+2) (x-2) (x-3) 

now 
x^3-3x^2-4x+12==0 iff (x+2) (x-2) (x-3)==0 
and 
(x+2) (x-2) (x-3)==0 iff 
(x+2)==0 or (x-2)==0 or (x-3)==0 

then 
the solution set is: 
S=={x1== -2, x2==2, x3==-3} 

hope this helps 
ciao ciao laugh

Driti1 May 31, 2016
 #2
avatar
0

thank you, but one quick question why did you switch the signs for +3x to -3x and -12 to +12

 May 31, 2016
 #3
avatar+26396 
+5

What are the zeros of f(x)=x^3+3x^2-4x-12?

 

x3+3x24x1212=223(xx1)(xx2)(xx3)12=(x1)(x2)(x3)12=x1=2x2=2x3=3(sign ?)(xx1)(xx2)(xx3)=x2(x1)+x2(x2)+x2(x3)3x2=x2(x1x2x3)3=(x1+x2+x3)3=x1+x2+x3sum2+2+3=7 (no)2+23=1 (no)22+3=3 (no)223=3 (yes)2+2+3=3 (no)2+23=3 (yes)22+3=1 (no)223=7 (no)

 

x1=2x2=2x3=3x3+3x24x12=(x2)(x+2)(x+3)

 

laugh

 May 31, 2016

0 Online Users