we can factorize x^3-3x^2-4x+12. in fact:
x^3-3x^2-4x+12 == x^2(x-3)-4(x-3) == (x^2-4)(x-3)==
== (x+2) (x-2) (x-3)
now
x^3-3x^2-4x+12==0 iff (x+2) (x-2) (x-3)==0
and
(x+2) (x-2) (x-3)==0 iff
(x+2)==0 or (x-2)==0 or (x-3)==0
then
the solution set is:
S=={x1== -2, x2==2, x3==-3}
hope this helps
ciao ciao
we can factorize x^3-3x^2-4x+12. in fact:
x^3-3x^2-4x+12 == x^2(x-3)-4(x-3) == (x^2-4)(x-3)==
== (x+2) (x-2) (x-3)
now
x^3-3x^2-4x+12==0 iff (x+2) (x-2) (x-3)==0
and
(x+2) (x-2) (x-3)==0 iff
(x+2)==0 or (x-2)==0 or (x-3)==0
then
the solution set is:
S=={x1== -2, x2==2, x3==-3}
hope this helps
ciao ciao
thank you, but one quick question why did you switch the signs for +3x to -3x and -12 to +12
What are the zeros of f(x)=x^3+3x^2-4x-12?
x3+3x2−4x−1212=2⋅2⋅3(x−x1)⋅(x−x2)⋅(x−x3)⇒−12=(−x1)⋅(−x2)⋅(−x3)⇒12=x1⏟=2⋅x2⏟=2⋅x3⏟=3(sign ?)(x−x1)⋅(x−x2)⋅(x−x3)=x2⋅(−x1)+x2⋅(−x2)+x2⋅(−x3)⇒3x2=x2⋅(−x1−x2−x3)3=−(x1+x2+x3)−3=x1+x2+x3sum2+2+3=7 (no)2+2−3=1 (no)2−2+3=3 (no)2−2−3=−3 (yes)−2+2+3=3 (no)−2+2−3=−3 (yes)−2−2+3=−1 (no)−2−2−3=−7 (no)
x1=2x2=−2x3=−3x3+3x2−4x−12=(x−2)⋅(x+2)⋅(x+3)