+0  
 
0
668
1
avatar+738 

Simplify \(\dfrac{\binom{n}{k}}{\binom{n}{k - 1}}.\)

 

 

 

thanks and please help! :) stay safe guys

 Jun 9, 2020
 #1
avatar+26393 
+2

Simplify

\( \dfrac{\dbinom{n}{k}}{\dbinom{n}{k - 1}}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\dbinom{n}{k - 1}} &=& \dfrac{n!}{(k-1)!(n-k+1)!} \quad &| \quad (k-1)!k=k!~ \text{or}~(k-1)!= \dfrac{k!}{k} \\\\ &=& k *\dfrac{n!}{k!(n-k+1)!} \quad &| \quad (n-k)!(n-k+1)=(n-k+1)! \\\\ &=& \dfrac{k}{n-k+1} * \dfrac{n!}{k!(n-k)!} \quad &| \quad \dfrac{n!}{k!(n-k)!} = \dbinom{n}{k} \\\\ &=& \mathbf{ \dfrac{k}{n-k+1} \dbinom{n}{k} } \\ \hline \end{array}\)


\\(\begin{array}{|rcll|} \hline && \mathbf{\dfrac{\dbinom{n}{k}}{\dbinom{n}{k - 1}}} \\\\ &=& \dfrac{\dbinom{n}{k}}{\dfrac{k}{n-k+1} \dbinom{n}{k} } \\\\ &=& \dfrac{n-k+1}{k} * \dfrac{\dbinom{n}{k}}{\dbinom{n}{k} } \\\\ &=& \mathbf{\dfrac{n-k+1}{k}} \\ \hline \end{array}\)

 

laugh

 Jun 10, 2020

1 Online Users

avatar