+0  
 
0
153
4
avatar

Arrange the five letters, ABCDE, into a group of 3-letter "words" with repeats of the letters allowed, such as AAA, AAB, AAC.....etc. How many such 3-letter combinations are possible? Thank you.

Guest May 18, 2018
 #1
avatar
0

These are combinations with repeats allowed. So, we have:

[5 + 3 - 1]C3 =7C3 = 35. Here are all your combinations:

 

{A, A, A} | {A, A, B} | {A, A, C} | {A, A, D} | {A, A, E} | {A, B, B} | {A, B, C} | {A, B, D} | {A, B, E} | {A, C, C} | {A, C, D} | {A, C, E} | {A, D, D} | {A, D, E} | {A, E, E} | {B, B, B} | {B, B, C} | {B, B, D} | {B, B, E} | {B, C, C} | {B, C, D} | {B, C, E} | {B, D, D} | {B, D, E} | {B, E, E} | {C, C, C} | {C, C, D} | {C, C, E} | {C, D, D} | {C, D, E} | {C, E, E} | {D, D, D} | {D, D, E} | {D, E, E} | {E, E, E} (total: 35)

Guest May 18, 2018
 #2
avatar+94189 
+1

There are 5 choices for the first letter, 5 for the second and 5 for the third so that is  5^3 = 125 words

Melody  May 19, 2018
 #3
avatar
0

Melody: What you calculated are "permutations with repeats allowed" as compared to the first answer, which are "combinations with repeats allowed". Here are the "permutations" you calculated:

 

{A, A, A} | {A, A, B} | {A, A, C} | {A, A, D} | {A, A, E} | {A, B, A} | {A, B, B} | {A, B, C} | {A, B, D} | {A, B, E} | {A, C, A} | {A, C, B} | {A, C, C} | {A, C, D} | {A, C, E} | {A, D, A} | {A, D, B} | {A, D, C} | {A, D, D} | {A, D, E} | {A, E, A} | {A, E, B} | {A, E, C} | {A, E, D} | {A, E, E} | {B, A, A} | {B, A, B} | {B, A, C} | {B, A, D} | {B, A, E} | {B, B, A} | {B, B, B} | {B, B, C} | {B, B, D} | {B, B, E} | {B, C, A} | {B, C, B} | {B, C, C} | {B, C, D} | {B, C, E} | {B, D, A} | {B, D, B} | {B, D, C} | {B, D, D} | {B, D, E} | {B, E, A} | {B, E, B} | {B, E, C} | {B, E, D} | {B, E, E} | {C, A, A} | {C, A, B} | {C, A, C} | {C, A, D} | {C, A, E} | {C, B, A} | {C, B, B} | {C, B, C} | {C, B, D} | {C, B, E} | {C, C, A} | {C, C, B} | {C, C, C} | {C, C, D} | {C, C, E} | {C, D, A} | {C, D, B} | {C, D, C} | {C, D, D} | {C, D, E} | {C, E, A} | {C, E, B} | {C, E, C} | {C, E, D} | {C, E, E} | {D, A, A} | {D, A, B} | {D, A, C} | {D, A, D} | {D, A, E} | {D, B, A} | {D, B, B} | {D, B, C} | {D, B, D} | {D, B, E} | {D, C, A} | {D, C, B} | {D, C, C} | {D, C, D} | {D, C, E} | {D, D, A} | {D, D, B} | {D, D, C} | {D, D, D} | {D, D, E} | {D, E, A} | {D, E, B} | {D, E, C} | {D, E, D} | {D, E, E} | {E, A, A} | {E, A, B} | {E, A, C} | {E, A, D} | {E, A, E} | {E, B, A} | {E, B, B} | {E, B, C} | {E, B, D} | {E, B, E} | {E, C, A} | {E, C, B} | {E, C, C} | {E, C, D} | {E, C, E} | {E, D, A} | {E, D, B} | {E, D, C} | {E, D, D} | {E, D, E} | {E, E, A} | {E, E, B} | {E, E, C} | {E, E, D} | {E, E, E} (total: 125)

 

Note: See the difference between the two in this article:

https://en.wikipedia.org/wiki/Combination.  [Look under "Number of combinations with repetition"

Guest May 19, 2018
edited by Guest  May 19, 2018
 #4
avatar+94189 
+1

Yes I know what I answered.

I answered the question that was asked.

Melody  May 21, 2018

32 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.