+0  
 
0
368
2
avatar

α-iβ=1/(a-ib)

then prove that(α22)(a2+b2)=1

Guest Mar 24, 2015

Best Answer 

 #2
avatar+889 
+13

On the assumption that alpha, beta, a and b are real,

$$\alpha -\imath \beta=\frac{1}{a-\imath b}=\frac{a+\imath b}{a^{2}+b^{2}}.$$

Taking the complex conjugate of both sides,

$$\alpha + \imath\beta=\frac{a-\imath b}{a^{2}+b^{2}},$$

and multiplying the equations together,

$$\alpha^{2}+\beta^{2}=\frac{a^{2}+b^{2}}{(a^{2}+b^{2})^{2}},$$

from which the result follows.

Bertie  Mar 24, 2015
 #1
avatar+2353 
+10

I think you either forgot to mention some of the details, or the variables (other than i off course) have an implicit meaning which I'm unaware of. 

Anyway, I can make it a little easier for you by doing the following. 

$$\begin{array}{lcl}
\alpha - i\beta &= \frac{1}{a-ib}\\
\alpha - i\beta &= \frac{1}{a-ib}\frac{a+ib}{a+ib}\\
\alpha - i\beta &= \frac{a+ib}{a^2+ aib - aib -i^2b^2}\\
\alpha - i\beta &= \frac{a+ib}{a^2+b^2}\\
(\alpha - i\beta)(\alpha + i\beta) &= \frac{(a+ib)(\alpha + i\beta)}{a^2+b^2}\\
\alpha^2 +i\alpha \beta - i\alpha \beta - i^2 \beta^2 &= \frac{(a+ib)(\alpha + i\beta)}{a^2+b^2}\\
\alpha^2 + \beta^2 &= \frac{(a+ib)(\alpha + i\beta)}{a^2+b^2}\\
(\alpha^2 + \beta^2)(a^2+b^2)&= (a+ib)(\alpha + i\beta)
\end{array}$$

 Now if you can prove that

$$(a+ib)(\alpha + i\beta) = 1$$

You're there.

 

Reinout

reinout-g  Mar 24, 2015
 #2
avatar+889 
+13
Best Answer

On the assumption that alpha, beta, a and b are real,

$$\alpha -\imath \beta=\frac{1}{a-\imath b}=\frac{a+\imath b}{a^{2}+b^{2}}.$$

Taking the complex conjugate of both sides,

$$\alpha + \imath\beta=\frac{a-\imath b}{a^{2}+b^{2}},$$

and multiplying the equations together,

$$\alpha^{2}+\beta^{2}=\frac{a^{2}+b^{2}}{(a^{2}+b^{2})^{2}},$$

from which the result follows.

Bertie  Mar 24, 2015

39 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.