+0  
 
0
8
1
avatar+4 

Let z and w be complex numbers such that |z| = |w| = 1 and zw is not equal to -1.

 

(a) Prove that conjugate {z} = 1/z and conjugate{w} = 1/w

 

(b) Prove that ={z + w}/{zw + 1} is a real number.

 Jul 15, 2024
 #1
avatar+2653 
0

(a) Let w = a + bi and z = c + di.  The rest is expanding.

 

(b) Let w = a + bi and z = c + di.  Then

\[\dfrac{w + z}{1 + wz} = \dfrac{a + c + bi + di}{1 + (a + bi)(c + di)}\]

 

To express this in rectangular form, we can multiply the numerator and denominator by the conjugate:

\[\dfrac{a + c + bi + di}{1 + (a + bi)(c + di)} = \dfrac{(a + c + bi + di)((1 - (a + bi)(c + di))}{(1 + (a + bi)(c + di))(1 - (a + bi)(c + di))}\]

 

The denominator simplifies to (1 - (a^2 + b^2)(c^2 + d^2)), which is real.  The numerator simplifies to a^2 - b^2 + c^2 - d^2, which is also real.  Therefore, the complex number (z + w)/(zw + 1) is real.

 Jul 15, 2024

0 Online Users