If z is a complex number satisfying z+(1/z)=1, calculate z^2+ (1/z^2).
Square both sides of the first equation:
\((z+\frac{1}{z})^2=1^2\\ z^2+2\cdot z \cdot \frac{1}{z} + \frac{1}{z^2} = 1\\z^2+\frac{1}{z^2}+2=1\\ \boxed{z^2+\frac{1}{z^2}=-1}\)