prove that for all complex numbers z, the conjugate(z)^n= conjugate(z^n)
In polar coordinates: \(z=re^{i\theta} \text{ and } \bar{z} = re^{-i\theta}\) so \((\bar{z})^n=(re^{-i\theta})^n=r^ne^{-in\theta}\) and \(\bar{z^n}=\bar{(r^ne^{in\theta})}=r^ne^{-in\theta}\)