+0  
 
0
197
1
avatar

Let w be a complex number such that |w| = 1, and the equation has a pure imaginary root z^2 + z = w. Find |z| 

 Nov 16, 2022
 #1
avatar+397 
+2

\(z^{2}+z= w,\\ |z^{2}+z|=|w| =1.\)

z is to be purely imaginary, so let z = iy, where y is a real number.

Then,

\(|-y^{2}+iy|=1,\\ \sqrt{y^{4}+y^{2}}=1,\\ y^{4}+y^{2}-1=0,\\ \displaystyle y^{2}=\frac{-1 \pm\sqrt{5}}{2}\)

y is to be a real number, so the negative sign is rejected, and then 

\(\displaystyle y = \pm\sqrt{\frac{\sqrt{5}-1}{2}}\)

so,

\(\displaystyle |z|=\sqrt{\frac{\sqrt{5}-1}{2}}.\)

 Nov 17, 2022

1 Online Users