Combine like terms: \({15 - 16i\over{-3+4i}}\)
Rationalize the denominator by multiplying by conjugate to get difference of squares which removes the imaginary term:
\({(15 - 16i)(-3 - 4i)\over{(-3 + 4i)(-3-4i)}}={-45+48i-60i+64i^2\over{9-16i^2}}={19-12i\over25}={19\over25}-{12\over25}i\)
Combine like terms: \({15 - 16i\over{-3+4i}}\)
Rationalize the denominator by multiplying by conjugate to get difference of squares which removes the imaginary term:
\({(15 - 16i)(-3 - 4i)\over{(-3 + 4i)(-3-4i)}}={-45+48i-60i+64i^2\over{9-16i^2}}={19-12i\over25}={19\over25}-{12\over25}i\)