+0  
 
0
87
1
avatar

 

Express the following in the form a + bi, where a and b are real numbers:

 

 

sqrt(i)

 

 

-"i" as in the complex number

Guest Sep 17, 2017
Sort: 

1+0 Answers

 #1
avatar+91229 
+2

 

Express the following in the form a + bi, where a and b are real numbers:      sqrt(i)

 

\(\sqrt i=a+bi\\ i=(a+bi)^2\\ i=a^2+2abi-b^2\\ i=(a^2-b^2)+2abi\\ so\\ a^2-b^2=0\;\; and\;\ 2ab=1\\ (a-b)(a+b)=0\\ a=\pm b\\ but \;\;since\;\; 2ab=1, \;\;a=b\\ 2a^2=1\\ a=\pm\frac{1}{\sqrt{2}}\\ a=\pm\frac{\sqrt 2}{2}\\ so\\ \sqrt{i}=\pm(\frac{\sqrt 2}{2}+\frac{\sqrt 2i}{2})\)

Melody  Sep 17, 2017

5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details