+0  
 
0
260
1
avatar

 

Express the following in the form a + bi, where a and b are real numbers:

 

 

sqrt(i)

 

 

-"i" as in the complex number

Guest Sep 17, 2017
 #1
avatar+93367 
+2

 

Express the following in the form a + bi, where a and b are real numbers:      sqrt(i)

 

\(\sqrt i=a+bi\\ i=(a+bi)^2\\ i=a^2+2abi-b^2\\ i=(a^2-b^2)+2abi\\ so\\ a^2-b^2=0\;\; and\;\ 2ab=1\\ (a-b)(a+b)=0\\ a=\pm b\\ but \;\;since\;\; 2ab=1, \;\;a=b\\ 2a^2=1\\ a=\pm\frac{1}{\sqrt{2}}\\ a=\pm\frac{\sqrt 2}{2}\\ so\\ \sqrt{i}=\pm(\frac{\sqrt 2}{2}+\frac{\sqrt 2i}{2})\)

Melody  Sep 17, 2017

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.