+0

# Composite function question

0
141
2

A)

B)Help would be very much appreciated!

Guest Dec 30, 2017
Sort:

#1
+6943
+1

Question 1

a)     f( x )  =  3x2 - 5x + 6    and    g(x)  =  x2 + 3x

f o g   =   f( g(x) )

f o g   =   f( x2 + 3x )

f o g   =    3( x2 + 3x )2 - 5( x2 + 3x ) + 6    I'll let you simplify these if necessary...

The domain is (-∞, ∞), and from this graph, we can see that the range is  [47/12, ∞) .

g o f   =   g( f(x) )

g o f   =  g( 3x2 - 5x + 6 )

g o f   =   ( 3x2 - 5x + 6 )2 + 3( 3x2 - 5x + 6 )

The domain is  (-∞, ∞), and from this graph, we can see that the range is  [3901/144, ∞) .

b)     f(x)  =  2x    and    g(x)  =  3 - x

f o g   =   f( g(x) )

f o g   =   f( 3 - x )

f o g   =   23 - x

The domain is  (-∞, ∞), and the range is  (0, ∞) .

g o f   =   g( f(x) )

g o f   =   g( 2x )

g o f   =   3 - 2x

The domain is  (-∞, ∞), and the range is  (-∞, 3) .

c)     f(x)  =  sin x    and    g(x)  =  x

f o g   =   f( g(x) )

f o g   =   f(  x  )             We already know that  f(x)  =  sin x , so....

f o g   =   sin x

The domain of this is  (-∞, ∞), and the range is  [-1, 1] .

g o f   =   g( f(x) )

g o f   =   g( sin x )     Plug in  " sin x "  for  " x "  into the function  g(x) .

g o f   =   sin x

The domain is  (-∞, ∞),  and the range is  [-1, 1] .

hectictar  Dec 30, 2017
edited by hectictar  Dec 30, 2017
#2
+6943
+1

Question 2

a)    3 - 3x   =   3 - f(x)   =   g( f(x) )   =  g o f

b)    x2 - 6x + 6   =   x2 - 6x + 9 - 3   =   (3 - x)2 - 3   =   ( g(x) )2 - 3   =   h( g(x) )   =   h o g

c)    6 - x2   =   3 + 3 - x2   =   3 - x2 + 3   =   3 - (x2 - 3)   =   3 - ( h(x) )   =   g( h(x) )   =   g o h

hectictar  Dec 30, 2017

### 29 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details