We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
251
2
avatar+557 

f(x)=3-4x

g(x)=3+4x

 

show that  f^-1(x)+g^-1(x)=0, for all the values of x.

 

winkwinkwink

 Feb 24, 2018

Best Answer 

 #1
avatar+18055 
+2

The first one    f(x) = y = 3-4x    solve for 'x'

y-3 = -4x

3-y = 4x

(3-y)/4 = x      now switch the x's and y's

f^-1 (x) =  (3-x)/4

 

The second one  y=3+4x

                            (y-3)/4 = x

f^-1 (x) =  (x-3)/4

 

Now add the two f^-1  (x) in red       (3-x)/4 + (x-3)/4    =  (x-x +3-3)/4 = 0

 Feb 24, 2018
 #1
avatar+18055 
+2
Best Answer

The first one    f(x) = y = 3-4x    solve for 'x'

y-3 = -4x

3-y = 4x

(3-y)/4 = x      now switch the x's and y's

f^-1 (x) =  (3-x)/4

 

The second one  y=3+4x

                            (y-3)/4 = x

f^-1 (x) =  (x-3)/4

 

Now add the two f^-1  (x) in red       (3-x)/4 + (x-3)/4    =  (x-x +3-3)/4 = 0

ElectricPavlov Feb 24, 2018
 #2
avatar+99586 
+2

Find the inverses

 

y =  3 - 4x                                         y   =   3 + 4x                      

y - 3  = - 4x                                       y - 3  =  4x

3 - y  = 4x                                         [ y - 3 ] / 4  = x

[3 - y ] / 4  = x                                   [ x -  3 ] / 4  =  the inverse

[3 - x] / 4  = the inverse

 

So..the sum of these inverses is :

 

[ 3 - x] / 4   +  [ x - 3] / 4  =

 

[ 3 - 3 - x + x ] / 4   =    0 / 4   =   0

 

 

 

cool cool cool

 Feb 24, 2018

30 Online Users

avatar
avatar
avatar