+0  
 
0
299
2
avatar+771 

If f(x) and g(x) are odd functions, show that the composite function f(g(x)) is also odd.

 Oct 10, 2017
 #1
avatar+7348 
+2

I want to know how to do this problem too.....

 Oct 10, 2017
 #2
avatar+97500 
+3

This is not likely to be a very good 'proof' but here goes.

 

since f(x) and g(x) are odd funtion,

\(f(-x)=-f(x)\)            and      \(g(-x)=-g(x)\)

 

Let  \(x_1\)  be a point such that    

\(a=g(x_1)   \qquad     -a=g(-x_1)\)

 

\(f(g(x_1))=f(a) \qquad f(g(-x_1))=f(-g(x_1))=f(-a)=-f(a)\\ so\\ f(-g(x_1))=-f(g(x_1)) \\ \text{by definition this means that }f(g(x)) \text{ is an odd function.}\)

.
 Oct 10, 2017

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.