We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
52
2
avatar+1110 

Let f(x) = 3x^2 - 7 and g(f(4)) = 9. What is g(f(-4))?

 Apr 12, 2019
 #1
avatar+100571 
+1

First, evaluate  f(4)  =  3(4)^2 - 7  =  48 - 7  =  41

Then evaluate f(-4) = 3(-4)^2 - 7 = 48 - 7 = 41

So    g(f(4)) = g(41) = 9

So...it  must also be that  g(f(-4)) = g(41)  = 9

 

cool cool cool

 Apr 12, 2019
 #2
avatar+9 
+2

Solution:

This is very simple. 

 

\(f(x) = 3(x^2 ) - 7\), so \(f(4) = 3(4^2) - 7 = (3*16) - 7 = 48 - 7 = 41\).

 

We know that \(g(f(4)) = 9\) so this means that \(g(41) = 9\).

 

\(f(-4) = 3 (-4^2) - 7\) and since \(-4^2 = -4 * -4 = 16\), this is the same thing as \(f(4)\) so \(f(-4)\) also equals \(41\).

 

We know that \(g(41) = 9\) thus \(g(f(-4)) = 9\) as well.

 

\(\boxed{g(f(-4) = \boxed{9}}\)

 

RB - ∃\(\)

.
 Apr 12, 2019
edited by RobertBoyle  Apr 12, 2019
edited by RobertBoyle  Apr 12, 2019

10 Online Users

avatar
avatar
avatar