+0  
 
0
323
4
avatar+187 

Express the function \(y=\sqrt{x^2+4}\)as a composition of \(y=f(g(x))\)of the two simpler functions \(y= f(u)\)and \(u=g(x)\)

 

\(f(u) =\)

\(g(x)=\)

 

I know how to put a function into another function but I don't know what this thing is asking :S

vest4R  Mar 16, 2017
 #1
avatar+187 
0

So I think I've got it....

 

I believe the y function is doing the square root so...

 

f(u) = x+4

g(x)= x^2

 

 

??

vest4R  Mar 16, 2017
 #2
avatar+26741 
0

Try  \(g(x)=x^2+4\)  and  \(f(u)=\sqrt u\)

 

or  \(g(x)=x^2\)   and  \(f(u)=\sqrt{u+4}\)

 

or ...

Alan  Mar 16, 2017
 #3
avatar+7348 
0

Express the function \(\sqrt{x^2+4}\) as a composition of y=f(g(x)) of the two simpler functions y= f(u) and u=g(x}

f(u)=

g(x)=

I know how to put a function into another function but I don't know what this thing is asking :S

 

.     \(y=\sqrt{x^2+4}\)

 

.     \(y=Root\ from \ ( x^2+4)\) 

.               u                    g

 

f(u)=\(\sqrt{g(x)}\)

 

\(g(x)=(x^2+4)\) 

 

I hope I could help.

 

laugh  !

 

.  

asinus  Mar 16, 2017
edited by asinus  Mar 16, 2017
edited by asinus  Mar 16, 2017
 #4
avatar
0

Alan was correct with, g(x)=x^2+4 and f(u)=sqrt(u)

Guest Mar 16, 2017

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.