+0  
 
0
1095
4
avatar+251 

Express the function \(y=\sqrt{x^2+4}\)as a composition of \(y=f(g(x))\)of the two simpler functions \(y= f(u)\)and \(u=g(x)\)

 

\(f(u) =\)

\(g(x)=\)

 

I know how to put a function into another function but I don't know what this thing is asking :S

 Mar 16, 2017
 #1
avatar+251 
0

So I think I've got it....

 

I believe the y function is doing the square root so...

 

f(u) = x+4

g(x)= x^2

 

 

??

 Mar 16, 2017
 #2
avatar+33661 
0

Try  \(g(x)=x^2+4\)  and  \(f(u)=\sqrt u\)

 

or  \(g(x)=x^2\)   and  \(f(u)=\sqrt{u+4}\)

 

or ...

 Mar 16, 2017
 #3
avatar+14995 
0

Express the function \(\sqrt{x^2+4}\) as a composition of y=f(g(x)) of the two simpler functions y= f(u) and u=g(x}

f(u)=

g(x)=

I know how to put a function into another function but I don't know what this thing is asking :S

 

.     \(y=\sqrt{x^2+4}\)

 

.     \(y=Root\ from \ ( x^2+4)\) 

.               u                    g

 

f(u)=\(\sqrt{g(x)}\)

 

\(g(x)=(x^2+4)\) 

 

I hope I could help.

 

laugh  !

 

.  

 Mar 16, 2017
edited by asinus  Mar 16, 2017
edited by asinus  Mar 16, 2017
 #4
avatar
0

Alan was correct with, g(x)=x^2+4 and f(u)=sqrt(u)

 Mar 16, 2017

1 Online Users

avatar