+0  
 
0
424
2
avatar+644 

Compute 1*1/2+2*1/4+3*1/8+...+n*1/2n+...

 Sep 20, 2017
 #1
avatar
0

∑[(n*1/2^n), n, 1, ∞] =converges to 2.

 Sep 20, 2017
 #2
avatar+21346 
+1

Compute 1*1/2+2*1/4+3*1/8+...+n*1/2n+...

 

\(\begin{array}{|rcll|} \hline S_n &=& 1*\frac{1}{2}+2*\frac{1}{4}+3*\frac{1}{8}+4*\frac{1}{16}+\ldots+n*\left(\frac{1}{2}\right)^n+\ldots \\ \hline \end{array} \)

 

(i)

\(\text{Multiply } S_n \text{ by } \tfrac12 \text{ the common ratio of the geometric series} \)

\(\small{ \begin{array}{rcccccccccccccl} S_n &=& 1*\frac{1}{2} &+& 2*\frac{1}{4} &+& 3*\frac{1}{8} &+& 4*\frac{1}{16} &+& \ldots &+& n*\left(\frac{1}{2}\right)^n && \\ \frac12 S_n &=& & & 1*\frac{1}{4} &+& 2*\frac{1}{8} &+& 3*\frac{1}{16} &+& \ldots &+& (n-1)*\left(\frac{1}{2}\right)^n &+& n*\left(\frac{1}{2}\right)^{n+1} \\ \hline (1-\frac12)S_n &=& [~ 1*\frac{1}{2} &+& 1*\frac{1}{4} &+& 1*\frac{1}{8} &+& 1*\frac{1}{16} &+& \ldots &+& 1*\left(\frac{1}{2}\right)^n ~] &-& n*\left(\frac{1}{2}\right)^{n+1} \quad (\text{subtract})\\ \end{array} } \)

 

The series in the square brackets is a geometric series with \(a = \frac12\), \(r = \frac12\) and \(n\) terms,
Thus, \(S_n\) for this series =\( \dfrac{a(1-r^{n})}{1-r} = \dfrac{\frac12(1-(\frac12)^n)}{1-\frac12}=1-(\frac12)^n\)

\(\begin{array}{rcll} (1-\frac12)S_n &=& [~ 1*\frac{1}{2} + 1*\frac{1}{4} + 1*\frac{1}{8} + 1*\frac{1}{16} + \ldots + 1*\left(\frac{1}{2}\right)^n ~] - n*\left(\frac{1}{2}\right)^{n+1} \\ (1-\frac12)S_n &=& 1-(\frac12)^n - n*\left(\frac{1}{2}\right)^{n+1} \\ \frac12S_n &=& 1-(\frac12)^n - n*\left(\frac{1}{2}\right)^{n+1} \\ \end{array} \)

 

(ii)

\(\text{Because } \left|\frac12\right| < 1 \text{, then } \lim \limits_{n\to \infty} { \left(\frac12 \right)^n } = 0 \text{ and } \lim \limits_{n\to \infty} { \left(\frac12 \right)^{n+1} } = 0\)

\(\begin{array}{rcll} \frac12S_n &=& 1-(\frac12)^n - n*\left(\frac{1}{2}\right)^{n+1} \\ S_n &=& 2 \left( 1-(\frac12)^n - n*\left(\frac{1}{2}\right)^{n+1} \right) \\ \lim \limits_{n\to \infty} {S_n} &=& 2 \left( 1-0 - n*0 \right) \\ &=& 2\cdot( 1 ) \\ &=& 2 \\ \end{array}\)

 

laugh

 Sep 20, 2017

17 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.