+0  
 
+20
1053
7
avatar+1886 

Compute how many steps binary search would take to find an item in arrays of various sizes.

 Oct 26, 2016

Best Answer 

 #5
avatar+26367 
+10

You mean that there is a maximum of 8 steps if the element exists in the array,

but 9 steps if the element does not exist?

 

Hello Melody!

 

YES!

 

\(\begin{array}{|lrcll|} \hline & \text{We search number 1:} & & \text{set } \{1,\dots,193 \}\\\\ (1) & 1 > \lfloor \frac{1+193}{2} \rfloor = 97 & no & \text{new set } \{1,\dots,97 \}\\ (2) & 1 > \lfloor \frac{1+97}{2} \rfloor = 49 & no & \text{new set } \{1,\dots,49 \}\\ (3) & 1 > \lfloor \frac{1+49}{2} \rfloor = 25 & no & \text{new set } \{1,\dots,25 \}\\ (4) & 1 > \lfloor \frac{1+25}{2} \rfloor = 13 & no & \text{new set } \{1,\dots,13 \}\\ (5) & 1 > \lfloor \frac{1+13}{2} \rfloor = 7 & no & \text{new set } \{1,\dots,7 \}\\ (6) & 1 > \lfloor \frac{1+7}{2} \rfloor = 4 & no & \text{new set } \{1,\dots,4 \}\\ (7) & 1 > \lfloor \frac{1+4}{2} \rfloor = 2 & no & \text{new set } \{1,2 \}\\ (8) & 1 > \lfloor \frac{1+2}{2} \rfloor = 1 & no & \text{we have found number 1 in the last set}\\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline & \text{We search number 1.5:} & & \text{set } \{1,\dots,193 \}\\\\ (1) & 1.5 > \lfloor \frac{1+193}{2} \rfloor = 97 & no & \text{new set } \{1,\dots,97 \}\\ (2) & 1.5 > \lfloor \frac{1+97}{2} \rfloor = 49 & no & \text{new set } \{1,\dots,49 \}\\ (3) & 1.5 > \lfloor \frac{1+49}{2} \rfloor = 25 & no & \text{new set } \{1,\dots,25 \}\\ (4) & 1.5 > \lfloor \frac{1+25}{2} \rfloor = 13 & no & \text{new set } \{1,\dots,13 \}\\ (5) & 1.5 > \lfloor \frac{1+13}{2} \rfloor = 7 & no & \text{new set } \{1,\dots,7 \}\\ (6) & 1.5 > \lfloor \frac{1+7}{2} \rfloor = 4 & no & \text{new set } \{1,\dots,4 \}\\ (7) & 1.5 > \lfloor \frac{1+4}{2} \rfloor = 2 & no & \text{new set } \{1,2 \}\\ (8) & 1.5 > \lfloor \frac{1+2}{2} \rfloor = 1 & yes & \text{new set } \{ 2 \}\\ (9) & 1.5 = 2 & no & \text{we have not found number 1.5 in the last set}\\ \hline \hline \end{array}\)

 

laugh

 Oct 26, 2016
 #1
avatar+26367 
+10

Compute how many steps binary search would take to find an item in arrays of various sizes.

Let n = size of the array

Let c = comparisons in the worse case

 

\(\begin{array}{|rcll|} \hline c &=& 1 + \log_2(n) \qquad & | \qquad \log_2(n) = \dfrac{ \ln(n) }{\ln(2)} \\ c &=& 1 + \dfrac{ \ln(n) }{\ln(2)} \\\\ n &=& 193\\ c &=& 1 + \dfrac{ \ln(193) }{\ln(2)} \\\\ c &=& 1 + \dfrac{ 5.26269018890 }{0.69314718056} \\\\ c &=& 1 + 7.59245703727 \\ c &=& 8.59245703727 \\ c &\approx& 9 \\ \hline \end{array} \)

 

No more than 9.

 

laugh

 Oct 26, 2016
 #2
avatar+118609 
+5

Thanks Heureka but can you explain to me why you have to add the 1 ?

 

Hi EMP,

I did one of these for you the other day :)

 

Just assume that it is the very last one that is the one you are looking for and see how lon it would take.

 

193 in the array.

Let the first on be in postion 0 and the last one be in position 193

1.      (0+193)/2 =  96     rounded down

2.      (0+96)/2   =  48

3.      (0+48)/2   =  24

4.      (0+24)/2   = 12

5.      (0+12)/2=    6

6.      6/2=3

7.      3/2=1

8.       1/2=0

 

That is 8

 

So I think that 9 will do it.

 Oct 26, 2016
 #3
avatar+26367 
+10

Thanks Heureka but can you explain to me why you have to add the 1 ?

 

 

Hello Melody!

The last compare on equality, if not equal, the name does not exist in the array.

 

laugh

heureka  Oct 26, 2016
 #4
avatar+118609 
+5

Thanks Heureka,

You mean that there is a maximum of 8 steps if the element exists in the array, but 9 steps if the element does not exist?

Melody  Oct 26, 2016
 #5
avatar+26367 
+10
Best Answer

You mean that there is a maximum of 8 steps if the element exists in the array,

but 9 steps if the element does not exist?

 

Hello Melody!

 

YES!

 

\(\begin{array}{|lrcll|} \hline & \text{We search number 1:} & & \text{set } \{1,\dots,193 \}\\\\ (1) & 1 > \lfloor \frac{1+193}{2} \rfloor = 97 & no & \text{new set } \{1,\dots,97 \}\\ (2) & 1 > \lfloor \frac{1+97}{2} \rfloor = 49 & no & \text{new set } \{1,\dots,49 \}\\ (3) & 1 > \lfloor \frac{1+49}{2} \rfloor = 25 & no & \text{new set } \{1,\dots,25 \}\\ (4) & 1 > \lfloor \frac{1+25}{2} \rfloor = 13 & no & \text{new set } \{1,\dots,13 \}\\ (5) & 1 > \lfloor \frac{1+13}{2} \rfloor = 7 & no & \text{new set } \{1,\dots,7 \}\\ (6) & 1 > \lfloor \frac{1+7}{2} \rfloor = 4 & no & \text{new set } \{1,\dots,4 \}\\ (7) & 1 > \lfloor \frac{1+4}{2} \rfloor = 2 & no & \text{new set } \{1,2 \}\\ (8) & 1 > \lfloor \frac{1+2}{2} \rfloor = 1 & no & \text{we have found number 1 in the last set}\\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline & \text{We search number 1.5:} & & \text{set } \{1,\dots,193 \}\\\\ (1) & 1.5 > \lfloor \frac{1+193}{2} \rfloor = 97 & no & \text{new set } \{1,\dots,97 \}\\ (2) & 1.5 > \lfloor \frac{1+97}{2} \rfloor = 49 & no & \text{new set } \{1,\dots,49 \}\\ (3) & 1.5 > \lfloor \frac{1+49}{2} \rfloor = 25 & no & \text{new set } \{1,\dots,25 \}\\ (4) & 1.5 > \lfloor \frac{1+25}{2} \rfloor = 13 & no & \text{new set } \{1,\dots,13 \}\\ (5) & 1.5 > \lfloor \frac{1+13}{2} \rfloor = 7 & no & \text{new set } \{1,\dots,7 \}\\ (6) & 1.5 > \lfloor \frac{1+7}{2} \rfloor = 4 & no & \text{new set } \{1,\dots,4 \}\\ (7) & 1.5 > \lfloor \frac{1+4}{2} \rfloor = 2 & no & \text{new set } \{1,2 \}\\ (8) & 1.5 > \lfloor \frac{1+2}{2} \rfloor = 1 & yes & \text{new set } \{ 2 \}\\ (9) & 1.5 = 2 & no & \text{we have not found number 1.5 in the last set}\\ \hline \hline \end{array}\)

 

laugh

heureka  Oct 26, 2016
 #6
avatar+118609 
+5

Thanks Heureka :)

 Oct 26, 2016
 #7
avatar+1886 
+26

Thank you! :)

 Oct 27, 2016

1 Online Users

avatar