Compute 90∘∑x=0∘cos2(x)
90∘∑x=0∘(cos2(x))=44∘∑x=0∘(cos2(x))+cos2(45∘)+90∘∑x=46∘(cos2(x))=44∘∑x=0∘(cos2(x))+90∘∑x=46∘(cos2(x))+cos2(45∘)=44∘∑x=0∘(cos2(x))+44∘∑x=0∘(cos2(90∘−x))+cos2(45∘)=44∘∑x=0∘(cos2(x))+44∘∑x=0∘(sin2(x))+cos2(45∘)=44∘∑x=0∘(cos2(x)+sin2(x))+cos2(45∘)=44∘∑x=0∘(1)+cos2(45∘)=45+cos2(45∘)|cos(45∘)=√22=45+(√22)2=45+24=45+12=45.5
=90∘∑x=0∘cos2x=cos20∘+cos21∘+⋯+cos290∘=1+(cos21∘+cos22∘+cos23∘+⋯+cos289∘)+0=1+(cos21∘+cos289∘)+(cos22∘+cos288∘)+⋯+(cos244∘+cos246∘)+cos245∘Note that cos2n∘+cos2(90−n)∘=1=1+1+1+1+⋯+1+12There are 44 1's=4412=892
.Sorry that's wrong. It should like this: cos^2 0+cos^2 1+cos^2 2 ... cos^2 90 (in degrees). heureka was correct