We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
48
7
avatar+140 

Compute \(\sum_{x=0^\circ}^{90} \cos^2 x\)

 Aug 13, 2019
 #1
avatar
+1

~ 45.5     is what I find  

 Aug 14, 2019
 #2
avatar+18754 
+1

....I used an online summation calculator to find that....

ElectricPavlov  Aug 14, 2019
 #3
avatar+1034 
+2

was that you? 

The guest?

tommarvoloriddle  Aug 14, 2019
 #5
avatar+18754 
0

Yeppers.....I often forget to Log In.....

ElectricPavlov  Aug 14, 2019
 #4
avatar+22896 
+2

Compute \(\sum \limits_{x=0^\circ}^{90^\circ} \cos^2(x)\)

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ \sum \limits_{x=0^\circ}^{90^\circ} \left(\cos^2(x) \right) } \\ &=& \sum \limits_{x=0^\circ}^{44^\circ} \left(\cos^2(x)\right)+\cos^2(45^\circ)+\sum \limits_{x=46^\circ}^{90^\circ} \left(\cos^2(x)\right) \\ &=& \sum \limits_{x=0^\circ}^{44^\circ} \left(\cos^2(x)\right)+\sum \limits_{x=46^\circ}^{90^\circ} \left(\cos^2(x)\right)+\cos^2(45^\circ) \\ &=& \sum \limits_{x=0^\circ}^{44^\circ} \left(\cos^2(x)\right)+\sum \limits_{x=0^\circ}^{44^\circ} \left(\cos^2(90^\circ-x)\right)+\cos^2(45^\circ) \\ &=& \sum \limits_{x=0^\circ}^{44^\circ} \left(\cos^2(x)\right)+\sum \limits_{x=0^\circ}^{44^\circ} \left(\sin^2(x)\right)+\cos^2(45^\circ) \\ &=& \sum \limits_{x=0^\circ}^{44^\circ} \left(\cos^2(x)+\sin^2(x)\right)+\cos^2(45^\circ) \\ &=& \sum \limits_{x=0^\circ}^{44^\circ} \left(1\right)+\cos^2(45^\circ) \\ &=& 45+\cos^2(45^\circ) \quad | \quad \cos(45^\circ) = \dfrac{\sqrt{2}}{2} \\ &=& 45+ \left(\dfrac{\sqrt{2}}{2}\right)^2 \\ &=& 45+ \dfrac{2}{4} \\ &=& 45+ \dfrac{1}{2} \\ &=& \mathbf{45.5} \\ \hline \end{array}\)

 

laugh

 Aug 14, 2019
 #6
avatar+7709 
0

\(\phantom{=} \displaystyle\sum_{x = 0^{\circ}}^{90^{\circ}} \cos^2 x\\ = \cos^2 0^{\circ} + \cos^2 1^{\circ} + \cdots + \cos^2 90^{\circ}\\ = 1 + (\cos^2 1^{\circ} + \cos^2 2^{\circ} + \cos^2 3^{\circ} + \cdots + \cos^2 89^{\circ}) + 0\\ = 1 + (\cos^2 1^{\circ} + \cos^2 89^{\circ}) + (\cos^2 2^{\circ} + \cos^2 88^{\circ}) + \cdots + (\cos^2 44^{\circ} + \cos^2 46^{\circ}) + \cos^2 45^{\circ}\\ \boxed{\text{Note that }\cos^2 n^{\circ} + \cos^2 (90 - n)^{\circ} = 1}\\ = 1 + 1 + 1 + 1 + \cdots + 1 + \dfrac{1}{2}\\ \boxed{\text{There are }\color{red}44\color{black}\text{ 1's}}\\ = 44 \dfrac{1}{2}\\ = \boxed{\dfrac{89}{2}}\)

.
 Aug 14, 2019
 #7
avatar+140 
+2

Sorry that's wrong. It should like this: cos^2 0+cos^2 1+cos^2 2 ... cos^2 90 (in degrees). heureka was correct smiley

 Aug 14, 2019
edited by LeoIsTheBest  Aug 14, 2019

12 Online Users