We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Confused

+1
185
1
+956

A bit confused here

Mar 19, 2018

### 1+0 Answers

#1
+100439
+4

Volume  =  L * W * H  = 70

But L  = 2W

So we have that

2W * W  * H   =  70

2W^2 * H  =  70

W^2 * H  =  35.......solve for the height

H  =  35/W^2

The surface area  is  the top  and bottom  = [ 2 * L * W]  = [ 2 *2W*W]  =  4W^2

And the total cost per m^2 for this part of the box is \$9 * Area  = 9*4W^2  =  36W^2

The surface area of two of the sides  =  2*2W * H  = 2*2W* (35/ W^2) =

140/W

And the surface area for the other two sides = 2*W*H = 2*W (35/W^2)  = 70/W

So....the total surface area of the sides  =  (140/W + 70/W)  =  210/W

And the total  cost per m^2  of this part of the box is \$6 * Area = 6*210/W  = 1260/W = 1260W^(-1)

So....the total cost, C,  is  given by

C  =  36W^2  + 1260W^(-1)      take the derivative and set to 0

C'  =  72W  - 1260W^(-2)  = 0

C'  = 72W - 1260/W^2  = 0

72W   =  1260/W^2

72W^3  =  1260

W^3  =  17.5

W  = 3√17.5  m

L  = 2W  =   2 3√17.5   m

H  =  35 /W^2  =   35 / 3√(17.5)^2   =  35 / 3√306.25   m

The minimum cost  is

36 W^2   +    1260 / W  =

36 3√[17.5^2]   +  1260 / 3√17.5   =

36 3√306.25  + 1260 / 3√17.5   ≈   \$727.97

Mar 19, 2018
edited by CPhill  Mar 19, 2018