We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
55
4
avatar+166 

The function \(f(x)\) satisfies \(f(x) + f(x + 2y) = 6x + 6y - 8\)
for all real numbers \(x\) and \(y\) Find the value of \(x\) such that \(f(x) = 0\)

 Aug 22, 2019
 #1
avatar+770 
+4

The function \(f(x)\) satisfies \(f(x)+f(x+2y)\ =\ 6x+6y-8\) or all real numbers \(x\) and \(y\) Find the value of \(x\) such that \(f(x)\ =\ 0\)

 

\(f(x)+f(x+2y)=6x+6y-8\)

 

\(f(x)+2y\ =\ 6x+6y-8\)

 

\(f(x)\ =\ 6x+6y-8+2y\)

 

\(f(x)\ =\ 6x+8y-8\)

 

\(f(x)\ =\ 8y-8\)

 

\(f(x)\ =\ 1\)

 

If im wrong I'm sorry I did this in my head in like three minutes.

smileyblush

 Aug 23, 2019
 #2
avatar+166 
+3

Your answer was incorrect but helped me realize that the answer is 4/3. So in an indirect way you got the right result. Thank you for helping

 Aug 23, 2019
 #3
avatar+770 
+2

you are welcome

travisio  Aug 23, 2019
 #4
avatar+23041 
+3

The function \(f(x) \)satisfies \(f(x) + f(x + 2y) = 6x + 6y - 8\)
for all real numbers \(x\) and \(y\)
Find the value of \(x\) such that \(f(x) = 0\)

 

\(\begin{array}{|rcll|} \hline \mathbf{f(x) + f(x + 2y)} &=& \mathbf{6x + 6y - 8} \quad &| \quad y= 0\\\\ f(x) + f(x + 2\cdot 0) &=& 6x + 6\cdot 0 - 8 \\ f(x) + f(x) &=& 6x - 8 \\ 2f(x)&=& 6x - 8 \quad &| \quad : 2 \\ f(x)&=& 3x - 4 \quad &| \quad f(x) = 0 \\ 0 &=& 3x - 4 \\ 3x &=& 4 \quad &| \quad : 3 \\ \mathbf{x} &=& \mathbf{\dfrac{4}{3}} \\ \hline \end{array}\)

 

laugh

 Aug 23, 2019

19 Online Users

avatar