confused
The x, y coordinates of F' =
[1cos(180) - 5sin(180), 1sin(180) + 5cos(180) ] = [ -1 , - 5 ]
And the x , y coordinates of G' =
[4cos(180) - (-3)sin(180), 4sin(180) + (-3)cos(180) ] = [ -4 , 3 ]
"b" is correct
Matrix Rotation counterclockwise:
(cos(φ)sin(φ)−sin(φ)cos(φ))φ=180∘→(−100−1)
The point P becomes to P':
(xy)⋅(−100−1)=(−x−y)
Let F=(15)Let G=(4−3)
F′=(15)⋅(−100−1)=(−1−5)G′=(4−3)⋅(−100−1)=(−43)
The answer is b.