+0  
 
0
223
2
avatar+282 

confused

lizagame  Mar 8, 2017
 #1
avatar+86919 
0

The x, y coordinates of F'  =

 

 [1cos(180) - 5sin(180),  1sin(180) + 5cos(180) ]  =   [ -1 , - 5 ]

 

And the x , y coordinates of G'  =

 

 [4cos(180) - (-3)sin(180),  4sin(180) + (-3)cos(180) ]  =   [ -4 , 3 ]

 

"b" is correct

 

 

cool cool cool

CPhill  Mar 8, 2017
 #2
avatar+19496 
0

confused

 

Matrix Rotation counterclockwise:

\(\begin{array}{|rcll|} \hline \begin{pmatrix} \cos(\varphi) & \sin (\varphi) \\ -\sin(\varphi) & \cos (\varphi) \\ \end{pmatrix} \stackrel{\varphi=180^{\circ}} \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ \end{pmatrix} \\ \hline \end{array} \)

 

The point P becomes to P':

\(\begin{array}{|rcll|} \hline \binom{x}{y}\cdot \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ \end{pmatrix} = \binom{-x}{-y} \\ \hline \end{array} \)

 

\(\text{Let}\ F =\binom{1}{5} \\ \text{Let}\ G =\binom{4}{-3} \)

\(\begin{array}{|rcll|} \hline F'=\binom{1}{5}\cdot \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ \end{pmatrix} = \binom{-1}{-5} \\ G'=\binom{4}{-3}\cdot \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ \end{pmatrix} = \binom{-4}{3} \\ \hline \end{array}\)

 

The answer is b.

 

laugh

heureka  Mar 9, 2017

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.