+0  
 
0
5
4
avatar+4 

 

There is a single sequence of integers  \(a_2,a_3,a_4,a_5,a_6, a_7 \)such that \(\frac{a_2}{2!} + \frac{a_3}{3!} + \frac{a_4}{4!} + \frac{a_5}{5!} + \frac{a_6}{6!} + \frac{a_7}{7!} = \frac{13}{42},\) and  \(0 \le a_i < i \) for \( i = 2,3, \dots, 7.\)Find \(a_2,a_3,a_4,a_5,a_6,a_7.\)

 Aug 6, 2024
 #1
avatar+1768 
0

The answers are a_2 = 0, a_3 = 1, a_4 = 2, a_5 = 0, a_6 = 2, a_6 = 3.  I'll post a solution later.

 Aug 8, 2024

1 Online Users