+0  
 
0
219
1
avatar

Why is i to the power of i (i^i) equal to .207879...

Guest Mar 23, 2017
 #1
avatar+6979 
0

\(\text{Let }x=i^i\\ \ln x = i \ln i\)

Now we need to find the value of ln(i).

 

\(e^{i\pi} = -1\\ \ln(-1)=i\pi\\ \ln i = \dfrac{1}{2}\ln(-1)= \dfrac{i\pi}{2}\)

Substitute the result into the equation:

\(\ln x = i\left(\dfrac{i\pi}{2}\right)\\ \quad \;\;=-\dfrac{\pi}{2}\\ e^{\ln x}=e^{-\pi /2}\\ x = e^{-\pi/2}\\ \therefore i^i = e^{-\pi /2}\)

e^(-pi /2) approximately equals 0.207879.

MaxWong  Mar 23, 2017

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.