We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
97
1
avatar

Solve the following where \(x_1\) and \(y_1\) are parameters/(not variables). 

\(y = \frac{-x_1} {2 y_1} \cdot (x - x_1)\)
\(y = \frac{2 y_1}{x_1}(x - x_1/2)\)

 May 20, 2019
 #1
avatar+6043 
+1

first thing to do is rewrite it so you don't have such confusion

 

\(x_1=a,~y_1=b\\~\\ y = -\dfrac{a}{2b}(x-a)\\~\\ y = \dfrac{2b}{a}\left(x - \dfrac a 2\right)\)

 

\(-\dfrac{a}{2b}(x-a)=\dfrac{2b}{a}\left(x-\dfrac a 2\right)\\~\\ -\dfrac{a^2}{4b^2}(x-a) =\left(x-\dfrac a 2\right)\\~\\ \dfrac{a^3}{4b^2}+ \dfrac a 2= x\left(1+\dfrac{a^2}{4b^2}\right)\\~\\ x = a\dfrac{\dfrac{a^2+2b^2}{4b^2}}{\dfrac{4b^2+a^2}{4b^2}}\\~\\ x = a \dfrac{a^2+2b^2}{a^2+4b^2}\)

 

Now you can substitute back in x1 for a and y1 for b

 May 20, 2019

35 Online Users

avatar
avatar
avatar
avatar
avatar