+0  
 
+5
787
7
avatar+2592 

Find the distance and midpoint between 

\((\sqrt{2},1) and (\sqrt{3},2)\)

 Feb 22, 2016

Best Answer 

 #3
avatar+129899 
+10

( √2 , 1)  ( √3 , 2)

 

Distance

 

sqrt [ ( √3 - √2)^2  + (2 -1)^2 ]  =

 

sqrt [ 3 - 2√6 + 2 + 1 ]  =

 

sqrt  [ 6 - 2√6 ]  =  about  1.049 units

 

Midpoint

 

 [ ( √3 + √2 ) / 2  ,  (2 + 1) / 2 ]  =

 

[ ( √3 + √2 ) / 2 ,  3 / 2 ]      [this is exact, Spawn ...!!!  ]

 

 

 

cool cool cool

 Feb 22, 2016
 #1
avatar+2592 
0

This page requires the assistance of Knight Melody of the radian table. I need urgent response if I am to get a good grade. Knight CPhill will also be most helpful here.

 Feb 22, 2016
 #2
avatar+2592 
0

I know the distance formula and how to use it. I just got confused with the radicals. To foil or not to foil?

 Feb 22, 2016
 #3
avatar+129899 
+10
Best Answer

( √2 , 1)  ( √3 , 2)

 

Distance

 

sqrt [ ( √3 - √2)^2  + (2 -1)^2 ]  =

 

sqrt [ 3 - 2√6 + 2 + 1 ]  =

 

sqrt  [ 6 - 2√6 ]  =  about  1.049 units

 

Midpoint

 

 [ ( √3 + √2 ) / 2  ,  (2 + 1) / 2 ]  =

 

[ ( √3 + √2 ) / 2 ,  3 / 2 ]      [this is exact, Spawn ...!!!  ]

 

 

 

cool cool cool

CPhill Feb 22, 2016
 #4
avatar+2592 
0

HAIL the Mighty Silver Knight CPhill of the Radian table. May His Awesomeness Last forever. 

 

Thank you.

SpawnofAngel  Feb 22, 2016
 #5
avatar+129899 
+1

( √2 , 1)  ( √3 , 2)

 

Distance

 

sqrt [ ( √3 - √2)^2  + (2 -1)^2 ]  =

 

Notice,Spawn    ( √3 - √2)^2   =   ( √3 - √2) * ( √3 - √2)  =

 

√3*√3 - 2√3*√2  + √2 *√2    =

 

3   - 2√6  + 2 

 

So we have.....

 

sqrt [ 3 - 2√6 + 2 + 1 ]  =

 

sqrt  [ 6 - 2√6 ]  =  about  1.049 units

 

Midpoint

 

 [ ( √3 + √2 ) / 2  ,  (2 + 1) / 2 ]  =

 

[ ( √3 + √2 ) / 2 ,  3 / 2 ]      [this is exact, Spawn ...!!!  ]

 

 

 

cool cool cool

 Feb 22, 2016
 #6
avatar+129899 
0

Thanks, Spawn....

 

 

cool cool cool

 Feb 22, 2016
 #7
avatar+8262 
+5

AND I AM ONE OF THOSE MIGHTY KNIGHTS!!!!!

 Feb 22, 2016
edited by DragonSlayer554  Feb 22, 2016

1 Online Users