+0  
 
0
163
6
avatar

Circle gamma intersects the hyperbola y=1/x  at (1,1), (3, 1/3) and two other points. What is the product of the y coordinates of the other two points?

Guest Jul 17, 2018
 #1
avatar+20025 
+2

Circle gamma intersects the hyperbola y=1/x  at (1,1), (3, 1/3) and two other points.

What is the product of the y coordinates of the other two points?

 

\(\text{Let $P_1 = (x_1 = 1,\ y_1 = 1)$} \\ \text{Let $P_2 = (x_2 = 3,\ y_2 = \frac13 )$} \\ \text{Center of the circle $= (x_0,\ y_0)$} \\ \text{Radius of the circle $= r $} \)

 

Formula of the circle:

\(\begin{array}{|lrcll|} \hline & (x-x_0)^2+(y-y_0)^2 &=& r^2 \\ \hline P_1(x_1,y_1): & (x_1 - x_0)^2 + (y_1 - y_0)^2 &=& r^2 \\ P_2(x_2,y_2): & (x_2 - x_0)^2 + (y_2 - y_0)^2 &=& r^2 \\ \hline (1)=(2): & (x_1 - x_0)^2 + (y_1 - y_0)^2 &=& (x_2 - x_0)^2 + (y_2 - y_0)^2 \\ & \Rightarrow \\ & ax_0+by_0 &=& c \\ & y_0 &=&\dfrac{c-ax_0}{b} \\ & &=& 3x_0-\dfrac{16}{3} \\ & \boxed{a=2(x_2-x_1) = 4 } \\ & \boxed{b=2(y_2-y_1) = -\dfrac{4}{3} } \\ & \boxed{c=x_2^2 +y_2^2-x_1^2-y_1^2=\dfrac{64}{9} } \\ \hline \end{array} \)

 

Circle intersects the hyperbola \(y=\dfrac{1}{x} \text{ or } x=\dfrac{1}{y}\)

\(\begin{array}{rcll} (x-x_0)^2+(y-y_0)^2 &=& r^2 \quad & | \quad r^2 = (x_1-x_0)^2+(y_1-y_0)^2 \\ (x-x_0)^2+(y-y_0)^2 &=& (x_1-x_0)^2+(y_1-y_0)^2 \quad & | \quad x=\dfrac{1}{y} \\ \left(\dfrac{1}{y}-x_0 \right)^2+(y-y_0)^2 &=& (x_1-x_0)^2+(y_1-y_0)^2 \\ \Rightarrow \\ \end{array} \\ \begin{array}{rcll} \boxed{ y^4-y^3\left(6x_0-\frac{32}{3}\right)+y^2\left(8x_0-\frac{38}{3}\right)-y\cdot2x_0+1= 0} \\ \end{array} \)

 

Examples calculated by WolframAlpha:

\(\begin{array}{|l|l|lr|l|} \hline x_0 & y_0 & y_3 & y_4 & y_3\cdot y_4 \\ \hline 1.4226 & -\dfrac{3.1966}{3} & -1.75493 & -1.70947 & 3.00000\ldots \\ 1.2 & -\dfrac{5.2}{3} & -4.06132 & -0.738675 & 2.99999\ldots \\ 1 & -\dfrac{7}{3} & -3-\sqrt{6} & \sqrt{6}-3 & 3 \\ 0.5 & -\dfrac{11.5}{3} & -8.65331 & -0.346688 & 2.99999\ldots \\ \hline \end{array} \)
 

 

I assume theproduct of the y coordinates of the other two points is 3

 

laugh

heureka  Jul 18, 2018
edited by heureka  Jul 18, 2018
 #2
avatar+93679 
+1

Thanks Heureka, this one looks interesting. 

Melody  Jul 18, 2018
 #3
avatar+20025 
+1

Circle gamma intersects the hyperbola y=1/x  at (1,1), (3, 1/3) and two other points. What is the product of the y coordinates of the other two points?

 

\(\ldots\)continue

 

\(\begin{array}{rcll} \boxed{ y^4-y^3\left(6x_0-\frac{32}{3}\right)+y^2\left(8x_0-\frac{38}{3}\right)-y\cdot2x_0+1= 0} & (1)\\ \end{array} \)

 

\(\text{We have two roots $y_1 = 1$ and $y_2 = \dfrac{1}{3}$, } \\ \text{So formula $(1)$ can be written as}: \)

\(\begin{array}{|rcll|} \hline && (y-y_1)(y-y_2)(y-y_3)(y-y_4) \quad | \quad y_1 = 1 \qquad y_2 = \dfrac{1}{3} \\ &=& (y-1)\left(y-\dfrac{1}{3}\right)(y-y_3)(y-y_4) \\ &=& (y^2-\dfrac13y - y+\dfrac13 )(y^2-yy_4-yy_3+y_3y_4 ) \\ &=& \left(y^2-\dfrac43y +\dfrac13 \right) \left(y^2-y(y_3+y_4)+y_3y_4 \right) \\ && \ldots \\ &=& y^4-y^3\left(\dfrac43 +y_3+y_4 \right) + y^2 \left( y_3y_4-\dfrac43(y_3+y_4 + \dfrac13 \right) - y \left(\dfrac43 y_3y_4-\dfrac13(y_3+y_4) \right) + \dfrac13y_3y_4 \\ \hline \end{array}\)

 

Compare:

\(\small{ \begin{array}{|rclclclclcl|} \hline && y^4 &-&y^3\left(6x_0-\frac{32}{3}\right) &+&y^2\left(8x_0-\frac{38}{3}\right) &-&y\cdot2x_0 &+& \color{red}1 \\ &=& y^4 &-&y^3\left(\dfrac43 +y_3+y_4 \right) &+&y^2 \left( y_3y_4-\dfrac43(y_3+y_4 + \dfrac13 \right) &-& y \left(\dfrac43 y_3y_4-\dfrac13(y_3+y_4) \right) &+& \color{red}\dfrac13y_3y_4 \\ \hline \end{array} } \)

 

\(\text{So $ 1 = \dfrac13 y_3y_4 \Rightarrow y_3y_4 = 3$} \)

 

The product of the y coordinates of the other two points is 3

 

laugh

heureka  Jul 18, 2018
 #4
avatar
+1

The equation of the circle can be written as

\(\displaystyle x^{2}+y^{2}+ax+by+c=0\;. \)

 

At intersections with the given hyperbola

\(\displaystyle \frac{1}{y^{2}}+y^{2}+\frac{a}{y}+by+c=0\;,\)

so,

\(\displaystyle y^{4}+by^{3}+cy^{2}+ay+1=0\;.\)

 

The product of the equations four roots will be the constant 1, two of the roots have a product of 1/3, so the product of the other two must be 3.

Guest Jul 18, 2018
 #5
avatar
+1

How did you get it too the 4th degree?

Guest Jul 19, 2018
 #6
avatar
0

Multiply the second equation by y^2, to clear the fractions.

Guest Jul 19, 2018

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.