+0  
 
0
752
1
avatar

Suppose a polling organization is conducting a survey to estimate the proportion of Americans who regularly attend religious services. The organization plans to gather data from a randomly selected sample of 450 individuals. On the basis of the "conservative" formula, what will be the margin of error for the survey?

 Apr 28, 2014

Best Answer 

 #1
avatar+6251 
+5

I'm not sure what "conservative" means but 

the 99% confidence margin of error is 

$$1.29\sqrt n$$

and the 95% confidence margin of error is 

$$0.98 \sqrt n$$

with n=450 these numbers are

$${\mathtt{1.29}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{450}}}} = {\mathtt{27.365\: \!032\: \!431\: \!919\: \!389\: \!2}}$$

$${\mathtt{0.98}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{450}}}} = {\mathtt{20.788\: \!939\: \!366\: \!884\: \!497\: \!2}}$$

 Apr 28, 2014
 #1
avatar+6251 
+5
Best Answer

I'm not sure what "conservative" means but 

the 99% confidence margin of error is 

$$1.29\sqrt n$$

and the 95% confidence margin of error is 

$$0.98 \sqrt n$$

with n=450 these numbers are

$${\mathtt{1.29}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{450}}}} = {\mathtt{27.365\: \!032\: \!431\: \!919\: \!389\: \!2}}$$

$${\mathtt{0.98}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{450}}}} = {\mathtt{20.788\: \!939\: \!366\: \!884\: \!497\: \!2}}$$

Rom Apr 28, 2014

0 Online Users