+0  
 
0
1038
1
avatar+12 

Consider the radioactive decay formula A=Aoe^-kt where a is the amount of radium remaining at the time t. Ao is the amount present initially and k is decay constant. After How many years would 10 grams of radium decay so that only 8 grams remain? The half life of radium is 1590 years

Maltesewolfman  Aug 24, 2015

Best Answer 

 #1
avatar+78754 
+10

We have5 grams remaining after 1590 yeats.....so.....

 

5 = 10 e^[-k(1590)]     divide both sides by 10

 

(.5)  = e^[-k(1590]     take the ln of both sides

 

ln (.5)  = ln e^[-k(1590]    and  we can write

 

ln (.5)  = [-k(1590] *ln e      and ln e = 1....so we have

 

ln(.5) = -k(1590)    divide both sides by 1590

 

ln(.5)/1590  = -k

 

-0.0004359416229937 = -k   .....so.....k = 0.0004359416229937

 

And we need to find  t for 8 grams remaining....so.....

 

8 = 10 e^[-0.0004359416229937 (t)]       divide both sides by 10

 

.8  = e^[-0.0004359416229937 (t)]    take the ln of both sides

 

ln(.8)  =  ln  e^[-0.0004359416229937 (t)]     and we can write

 

ln(.8)  = [-0.0004359416229937 (t)] ln e     and ln e = 1   .....so we have...

 

ln(.8) = -0.0004359416229937 (t)    divide both sides by  -0.0004359416229937

 

ln(.8) / -0.0004359416229937  = t = about 511.87 years

 

 

CPhill  Aug 24, 2015
Sort: 

1+0 Answers

 #1
avatar+78754 
+10
Best Answer

We have5 grams remaining after 1590 yeats.....so.....

 

5 = 10 e^[-k(1590)]     divide both sides by 10

 

(.5)  = e^[-k(1590]     take the ln of both sides

 

ln (.5)  = ln e^[-k(1590]    and  we can write

 

ln (.5)  = [-k(1590] *ln e      and ln e = 1....so we have

 

ln(.5) = -k(1590)    divide both sides by 1590

 

ln(.5)/1590  = -k

 

-0.0004359416229937 = -k   .....so.....k = 0.0004359416229937

 

And we need to find  t for 8 grams remaining....so.....

 

8 = 10 e^[-0.0004359416229937 (t)]       divide both sides by 10

 

.8  = e^[-0.0004359416229937 (t)]    take the ln of both sides

 

ln(.8)  =  ln  e^[-0.0004359416229937 (t)]     and we can write

 

ln(.8)  = [-0.0004359416229937 (t)] ln e     and ln e = 1   .....so we have...

 

ln(.8) = -0.0004359416229937 (t)    divide both sides by  -0.0004359416229937

 

ln(.8) / -0.0004359416229937  = t = about 511.87 years

 

 

CPhill  Aug 24, 2015

4 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details