+0  
 
0
799
3
avatar+45 

x(t) = 12 cos (5t) + 4 sin (5t)                       

For which value of t the “Reduced Form” is equal to zero (x = 0) in the interval 0 < wt - phi < pi?

 Apr 26, 2016

Best Answer 

 #3
avatar+37155 
+5

when t = 21.688      x = 0

 

Sure      x= 0    =   12cos(5t) + 4sin(5t)

re-arranging           12cos(5t) = -4sin5t

                               -12/4 =  sin5t / cos5t      (remember sin/ cos = tan)

                                -3      =  tan5t

                            Arctan(-3) = 5t

                                    -71.565   or 108.43 (this is the only answer between 0 and pi)   = 5t       t = 21.686   

 Apr 27, 2016
 #1
avatar+37155 
+5

when t = 21.688      x = 0

 Apr 27, 2016
 #2
avatar+45 
+5

can you explain how you got that?

jennyara  Apr 27, 2016
 #3
avatar+37155 
+5
Best Answer

when t = 21.688      x = 0

 

Sure      x= 0    =   12cos(5t) + 4sin(5t)

re-arranging           12cos(5t) = -4sin5t

                               -12/4 =  sin5t / cos5t      (remember sin/ cos = tan)

                                -3      =  tan5t

                            Arctan(-3) = 5t

                                    -71.565   or 108.43 (this is the only answer between 0 and pi)   = 5t       t = 21.686   

ElectricPavlov Apr 27, 2016

0 Online Users