We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Evaluate the following "continued fraction" : {1; 1, 2, 1, 2, 1, 2, 1, 2.........etc.}. Thanks for help.

Guest Sep 21, 2017

#1**0 **

Can you please rephrase that? I'm not sure what {1; 1, 2, 1, 2, 1, 2, 1, 2.........etc.}. Also, I think the mathy term you are trying to say is "repeating decimal", or "continued decimal".

Jeff123 Sep 21, 2017

#2**0 **

No, it is called "continued fraction" of a well-known number: It means:

1 + 1/(1 + 1/(2 + 1/(1 + 1/2 +.......etc.)))

Guest Sep 21, 2017

#3**+2 **

That is right! This is called "continued fraction" as the questioner rightly says so:

We can represent it as follows: x = 1; 1, 2, 1, 2, 1, 2.......etc., which,in turn, can be written as:

1+ 2 / {1+x} = x, solve for x

2/(x + 1) + 1 = x

Bring 2/(x + 1) + 1 together using the common denominator x + 1:

(x + 3)/(x + 1) = x

Multiply both sides by x + 1:

x + 3 = x (x + 1)

Expand out terms of the right hand side:

x + 3 = x^2 + x

Subtract x^2 + x from both sides:

3 - x^2 = 0

Subtract 3 from both sides:

-x^2 = -3

Multiply both sides by -1:

x^2 = 3

Take the square root of both sides:

** x = sqrt(3) or x = -sqrt(3). Since the continued fraction has all positive signs, then the correct is: sqrt(3).**

Guest Sep 21, 2017

#4**0 **

\(x=1+\dfrac{1}{2+\frac{1}{1+...}}\\ 1+\dfrac{1}{x}=1+\dfrac{1}{1+\frac{1}{2+...}}\\ \)

First we let x = {1;2,1,2,1,...}, then 1+1/x = {1;1,2,1,2,1,2,...}

Then we find the value of x.

\(x=1+\dfrac{1}{2+\frac{1}{1+...}}\\ x=1+\dfrac{1}{2+x}\\ (x-1)(2+x)=1\\ x^2+x-3=0\\ (x+\dfrac{1}{2})^2=\dfrac{13}{4}\\ x+\dfrac{1}{2}=\pm\dfrac{\sqrt{13}}{2}\\ x=\dfrac{-1+\sqrt{13}}{2}\text{ or }x=\dfrac{-1-\sqrt{13}}{2}(rej.)\\ \)

The value of the original expression is 1+1/x which is:

\(1+\dfrac{2}{\sqrt{13}-1}\\ =\dfrac{\sqrt{13}+1}{\sqrt{13}-1}\\ =\dfrac{14+2\sqrt{13}}{12}\\ =\dfrac{7+\sqrt{13}}{6}\)

:D

~The smartest cookie in the world.

MaxWong Sep 21, 2017

#5**+1 **

x=1+\dfrac{1}{2+\frac{1}{1+...}}\\ 1+\dfrac{1}{x}=1+\dfrac{1}{1+\frac{1}{2+...}}\\

\(x=1+\dfrac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{2+...}}}}\\ x-1=\dfrac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{2+...}}}}\\ x-1=\dfrac{1}{1+\frac{1}{2+(x-1)}}\\ x-1=\dfrac{1}{\frac{2+x-1+1}{2+x-1}}\\ x-1=\dfrac{1}{\frac{2+x}{1+x}}\\ x-1=\dfrac{1+x}{x+2}\\ (x-1)(x+2)=x+1\\ x^2+x-2=x+1\\ x^2=3\\ x=\pm\sqrt3\)

As our guest said, all the signs are positive so the answer is \(\sqrt3\)

.Melody Sep 21, 2017