+0  
 
0
317
2
avatar

Convert the polar equation to rectangular coordinates.

sec(θ)=2

Guest May 7, 2017
 #1
avatar
+1

Solved it smiley

 

Initial Question:

\(sec(\theta )=2\)

 

Convert it to cosine

\(cos(\theta)=\frac{1}{2}\)

Which means

\(\theta = \pm \frac{\pi}{3}\)

\(tan(\theta)=\pm\frac{\sqrt{3}}{1}=\pm\sqrt{3}\)

\(\frac{y}{x}=\pm\sqrt{3}\)

Final answer is.

\(y=\pm\sqrt{3}x\)

Guest May 7, 2017
 #2
avatar+87309 
+1

sec(θ)=2

 

r/x  = 2

 

sqrt [ x^2 + y^2] / x  = 2

 

sqrt [ x^2 + y^2 ]  = 2x     square both sides

 

x^2 + y^2  = 4x^2

 

y^2  = 3x^2         take the square root of both sides

 

y =  ±√(3)x

 

 

cool cool cool

CPhill  May 7, 2017

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.