+0  
 
0
464
3
avatar

The line y=(3x+20)/4 intersects a circle centered at the origin at A and B. We know the length of chord AB is 26. Find the area of the circle.

 Jul 14, 2021
 #1
avatar+208 
+1

first write \(y=\frac{3x+20}{4}\) in standard form: 

\(y=\frac{3x+20}{4}\:\: \\4y=3x+20\:\:\:\:\:\:\:\:\:\: \\3x-4y+20=0\:\:\)

using distance from point to line formula: 

\(\frac{\left|3\cdot 0-4\cdot 0+20\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{20}{5}=4\)

call this distance RS

rs is a perpendicular bisector of the chord

this creates a right triangle with sides AR, RS, and AS

so the radius squared  is: \(10^2+4^2=116\)

area of circle: \(\pi r^2=116\pi \)

 

JP

 Jul 14, 2021
 #2
avatar+129899 
+1

Just  a slight  mistake  by JP....

 

We  have   a right triangle   with   legs of  4  and 13

 

The  radius^2   =   4^2  + 13^2   =    185

 

So.....the  area  =   185 pi

 

cool cool cool

 Jul 14, 2021
 #3
avatar+208 
0

thanks for the correction

JKP1234567890  Jul 14, 2021

3 Online Users