+0  
 
0
19
2
avatar+0 

Find all points $(x,y)$ that are $5$ units away from the point $(2,7)$ and that lie on the line $y = 5x - 28.$

 Feb 10, 2024
 #1
avatar+297 
+1

Find all points (x,y) that are 5 units away from the point (2,7) and that lie on the line y = 5x - 28

 

If we plug it into desmos and draw a circle of \(\left(x-2\right)^{2}+\left(y-7\right)^{2}=25\), then we can see all the points of intersection, and there are 2.

\((7,7)\)

\((6.615,5.077)\) That is not the value, it is just an approximation.

 Feb 10, 2024
 #2
avatar+129850 
+1

We want to find the intersection points of

(x -2)^2  + (y -7)^2   = 25       and  y = 5x -28

 

So

 

(x -2)^2  + (5x -28 - 7)^2   =   25

 

(x -2)^2  + (5(x -7))^2    = 25

 

(x -2)^2 + 25(x - 7)^2  = 25

 

x^2 - 4x + 4 + 25 (x^2 - 14x + 49)  = 25

 

x^2  - 4x + 4  + 25x^2 - 350x + 1225 - 25 =  0

 

26x^2 - 354x +  1204   =  0

 

x =  (354 + sqrt [ 354^2  - 4*26*1204 ])   / 52    =  7    and

 

x =   (354 - sqrt [ 354^2  - 4*26*1204 ])   / 52 =   86/13

 

 

So   y = 5(7) - 28 =  7

And

y = 5(86/13) - 28  =  66 /13

 

 

So  the points  are   (7,7)   and (86/13  , 66 / 13)

 

cool cool cool

 Feb 10, 2024

1 Online Users

avatar