+0  
 
0
304
1
avatar

The equation of the circle shown in the following diagram can be written as x^2 + Ay^2 + Bx + Cy + D = 0.  Find A + B + C + D.

 

 Feb 14, 2022

Best Answer 

 #1
avatar+37157 
+2

Center at   -1,1

 

(x+1)^2   + (y-1)^2   = r^2         r^2 = distance between center and the point on the circumf     r^2 = ( 3^2 + 2^2) = 13

 

(x+1)^2 + ( y-1)^2 = 13      expand to get to the form requested ....

 

x^2 + 2x + 1    +  y^2  -2y + 1   - 13 = 0

x^2   + 2x        +  y^2  - 2y     -11   = 0                 <========= take if from here !

 Feb 14, 2022
 #1
avatar+37157 
+2
Best Answer

Center at   -1,1

 

(x+1)^2   + (y-1)^2   = r^2         r^2 = distance between center and the point on the circumf     r^2 = ( 3^2 + 2^2) = 13

 

(x+1)^2 + ( y-1)^2 = 13      expand to get to the form requested ....

 

x^2 + 2x + 1    +  y^2  -2y + 1   - 13 = 0

x^2   + 2x        +  y^2  - 2y     -11   = 0                 <========= take if from here !

ElectricPavlov Feb 14, 2022

1 Online Users