The circle centered at (2, -1) and with radius 4 intersects the circle centered at (2, 5) and with radius sqrt(10) at two points A and B. Find (AB)^2.
\(Find\ \overline{AB}\ ^2\)
Hello Guest!
\(+\sqrt{16-(x-2)^2}-1=-\sqrt{10-(x-2)^2}+5\\ +\sqrt{16-(x-2)^2}+\sqrt{10-(x-2)^2}=6\ |\ square\\ 16-(x-2)^2+2\cdot \sqrt{16-(x-2)^2}\cdot\sqrt{10-(x-2)^2}+10-(x-2)^2=36\\\)
\(x\in\{2-\frac{\sqrt{15}}2{},2+\frac{\sqrt{15}}2{}\}\)
\(\overline{AB}\ ^2=15\)
!