Processing math: 100%
 
+0  
 
0
281
5
avatar

The circle centered at (2,-1) and with radius 4 intersects the circle centered at (2,6) and with radius sqrt{11} at two points A and B. Find (AB)^2.

 Jul 10, 2022
 #1
avatar
+2

The equation of the circle with centre (h,k) is: (xh)2+(yk)2=r2, where r is the radius of the circle.

So:

(x2)2+(y+1)2=16 is the equation of the first circle.                 (1)

(x2)2+(y6)2=11 is the equation of the second circle.           (2)

If they intersect, then we need to solve these system of equations simultaneously.

From (1):

(x2)2=16(y+1)2

Substitute this in (2), to get:

16(y+1)2+(y6)2=11   (Expand the brackets).

16y22y1+y212y+36=11

14y=40y=207

Next, from (1):

(x2)2=16(277)2x=±557+2

Hence the points are: A(557+2,207),and B(557+2,207)

Then: (AB)2=((557+2)(557+2))2+(207207)2  

Therefore, (AB)2=(2557)2=22049

I hope this helps! :)

 Jul 10, 2022
 #4
avatar+1166 
+10

Like I said before, you should sign up! I can easily recognize you anywhere. So just sign up! You're really good!

nerdiest  Jul 10, 2022
 #5
avatar+2 
0

Thank you! Ok. I created an account :D. 

MathHelping  Jul 10, 2022
 #2
avatar+50 
+1

Nice Guest, very good explanation!wink

 Jul 10, 2022
 #3
avatar
+1

Thank you :)!

Guest Jul 10, 2022

3 Online Users

avatar