+0  
 
0
86
3
avatar

Find the equation of the line passing through the points (-2,5) and (3/2, 2). Express the answer in standard form.

 Apr 14, 2022

Best Answer 

 #2
avatar+2455 
+1

The slope of the line is \({{2 - 5 } \over {1.5+2}} = -{6 \over 7}\)

 

Plugging this into slope-intercept form, we have: \({35 \over 7} = {12 \over 7} + b\), meaning the y-intercept is \({23 \over 7}\)

 

Thus, our equation is: \(y = -{6 \over 7}x + {23 \over 7}\)

 

To convert it to standard form, add \({6 \over 7}x\) to both sides, giving us: \(y + {6 \over 7}x = {23 \over 7}\)

 

Multiply this by 7, giving us: \(\color{brown}\boxed{7y+6x=23}\)

 Apr 14, 2022
 #1
avatar+61 
-2

\(\boxed{𝑦=−\frac{6}{7}𝑥+\frac{23}7}\)

.
 Apr 14, 2022
edited by qjin27  Apr 14, 2022
 #2
avatar+2455 
+1
Best Answer

The slope of the line is \({{2 - 5 } \over {1.5+2}} = -{6 \over 7}\)

 

Plugging this into slope-intercept form, we have: \({35 \over 7} = {12 \over 7} + b\), meaning the y-intercept is \({23 \over 7}\)

 

Thus, our equation is: \(y = -{6 \over 7}x + {23 \over 7}\)

 

To convert it to standard form, add \({6 \over 7}x\) to both sides, giving us: \(y + {6 \over 7}x = {23 \over 7}\)

 

Multiply this by 7, giving us: \(\color{brown}\boxed{7y+6x=23}\)

BuilderBoi Apr 14, 2022
 #3
avatar+115 
-3

Cerrectoo

Kakashi  Apr 14, 2022

24 Online Users