+0

# Coordinates

0
36
3

Find the equation of the line passing through the points (-2,5) and (3/2, 2). Express the answer in standard form.

Apr 14, 2022

#2
+1384
+1

The slope of the line is $${{2 - 5 } \over {1.5+2}} = -{6 \over 7}$$

Plugging this into slope-intercept form, we have: $${35 \over 7} = {12 \over 7} + b$$, meaning the y-intercept is $${23 \over 7}$$

Thus, our equation is: $$y = -{6 \over 7}x + {23 \over 7}$$

To convert it to standard form, add $${6 \over 7}x$$ to both sides, giving us: $$y + {6 \over 7}x = {23 \over 7}$$

Multiply this by 7, giving us: $$\color{brown}\boxed{7y+6x=23}$$

Apr 14, 2022

#1
+55
-2

$$\boxed{𝑦=−\frac{6}{7}𝑥+\frac{23}7}$$

.
Apr 14, 2022
edited by qjin27  Apr 14, 2022
#2
+1384
+1

The slope of the line is $${{2 - 5 } \over {1.5+2}} = -{6 \over 7}$$

Plugging this into slope-intercept form, we have: $${35 \over 7} = {12 \over 7} + b$$, meaning the y-intercept is $${23 \over 7}$$

Thus, our equation is: $$y = -{6 \over 7}x + {23 \over 7}$$

To convert it to standard form, add $${6 \over 7}x$$ to both sides, giving us: $$y + {6 \over 7}x = {23 \over 7}$$

Multiply this by 7, giving us: $$\color{brown}\boxed{7y+6x=23}$$

BuilderBoi Apr 14, 2022
#3
+122
-3

Cerrectoo

Kakashi  Apr 14, 2022