+0  
 
0
334
5
avatar

cos^6x=cos^4x

Guest Nov 8, 2014

Best Answer 

 #2
avatar+81077 
+10

cos^6x = cos^4x     subtract cos^4x ffrom both sides

cos^6x - cos^4x =  0    faactor this

cos^4x*(cos^2x - 1) = 0

cos^4x (cosx + 1)(cosx-1)   setting each factor to 0, we have

x = 0,  pi/2,  pi , (3 pi)/2        in the interval  [0, 2pi)

More general solutions are  x = 0 + (pi)n  and   x = pi/2 + (pi/2)n    where n is an integer

 

CPhill  Nov 8, 2014
Sort: 

5+0 Answers

 #1
avatar+91489 
+5

$$\\cos^6x=cos^4x\\
$Divide both sides by $\;cos^4x\\
cos^2x=1\\
cosx=\pm1
$At this point I just think about the unit circle$\\
$cos of an angle is given by the x value (not the angle x)$\\
$The x value is 1 at 0 and it is -1 at 180 degrees$\\
So \\
x=180n$ degrees where $ n\in Z\\
or\\
x=n\pi$ radians where $ n\in Z\\$$

Melody  Nov 8, 2014
 #2
avatar+81077 
+10
Best Answer

cos^6x = cos^4x     subtract cos^4x ffrom both sides

cos^6x - cos^4x =  0    faactor this

cos^4x*(cos^2x - 1) = 0

cos^4x (cosx + 1)(cosx-1)   setting each factor to 0, we have

x = 0,  pi/2,  pi , (3 pi)/2        in the interval  [0, 2pi)

More general solutions are  x = 0 + (pi)n  and   x = pi/2 + (pi/2)n    where n is an integer

 

CPhill  Nov 8, 2014
 #3
avatar+91489 
+5

Okay I missed some answers - thanks for picking that up chris but your presentation looks strange.

isn't

x = 0 + (pi)n  and   x = pi/2 + (pi/2)n  

really just

$$x=\frac{n\pi}{2}\qquad where \qquad n\in Z$$           

 

???      

Melody  Nov 8, 2014
 #4
avatar+81077 
+5

Yeah..... your presenttion is better....we have to be careful in these trig equations about "dividing away" solutions....it's analagous to "throwing away" roots in a polynomial.....

 

CPhill  Nov 8, 2014
 #5
avatar+91489 
0

YES WE DO  !!!    ME MORE THAN YOU !!!      LOL       :)))))

Melody  Nov 8, 2014

17 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details