Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1550
5
avatar

cos^6x=cos^4x

 Nov 8, 2014

Best Answer 

 #2
avatar+130477 
+10

cos^6x = cos^4x     subtract cos^4x ffrom both sides

cos^6x - cos^4x =  0    faactor this

cos^4x*(cos^2x - 1) = 0

cos^4x (cosx + 1)(cosx-1)   setting each factor to 0, we have

x = 0,  pi/2,  pi , (3 pi)/2        in the interval  [0, 2pi)

More general solutions are  x = 0 + (pi)n  and   x = pi/2 + (pi/2)n    where n is an integer

 

 Nov 8, 2014
 #1
avatar+118702 
+5

cos6x=cos4x$Dividebothsidesby$cos4xcos2x=1cosx=±1$AtthispointIjustthinkabouttheunitcircle$$cosofanangleisgivenbythexvalue(nottheanglex)$$Thexvalueis1at0anditis1at180degrees$Sox=180n$degreeswhere$nZorx=nπ$radianswhere$nZ

.
 Nov 8, 2014
 #2
avatar+130477 
+10
Best Answer

cos^6x = cos^4x     subtract cos^4x ffrom both sides

cos^6x - cos^4x =  0    faactor this

cos^4x*(cos^2x - 1) = 0

cos^4x (cosx + 1)(cosx-1)   setting each factor to 0, we have

x = 0,  pi/2,  pi , (3 pi)/2        in the interval  [0, 2pi)

More general solutions are  x = 0 + (pi)n  and   x = pi/2 + (pi/2)n    where n is an integer

 

CPhill Nov 8, 2014
 #3
avatar+118702 
+5

Okay I missed some answers - thanks for picking that up chris but your presentation looks strange.

isn't

x = 0 + (pi)n  and   x = pi/2 + (pi/2)n  

really just

x=nπ2wherenZ           

 

???      

 Nov 8, 2014
 #4
avatar+130477 
+5

Yeah..... your presenttion is better....we have to be careful in these trig equations about "dividing away" solutions....it's analagous to "throwing away" roots in a polynomial.....

 

 Nov 8, 2014
 #5
avatar+118702 
0

YES WE DO  !!!    ME MORE THAN YOU !!!      LOL       :)))))

 Nov 8, 2014

1 Online Users