Solve for x over the real numbers:
cos(x) cosh(x) = 0
Split into two equations:
cos(x) = 0 or cosh(x) = 0
Take the inverse cosine of both sides:
x = π/2 + π n for n element Z
or cosh(x) = 0
cosh(x) = 0 has no solution since for all x element R, cosh(x)>=1 and True:
Answer: | x = π/2 + π n for n element Z
coshx*cosx=0 x=?
\(cos\ x =0\\x=\frac{\pi}{2}+\pi\cdot n\\n \in ℤ\)
\(cosh\ x=\frac{1}{2}(e^x+e^{-x})>0\\ for \ x\in \Re\) no solution
\(solution:\)
\(coshx \cdot cosx=0\\x_1=\frac{\pi}{2} \\x_2=\frac{\pi}{2}+\pi\\x_3=-\frac{\pi}{2}\\x_4=-(\frac{\pi}{2}+\pi) \)
\(x=\frac{\pi}{2}+\pi\cdot n\) Thank you! C.
\( for\ n \in ℤ\)
!