+0  
 
0
437
2
avatar

if you have a triangle that has sides with length of 14, 19, and 12, how could you get the angle using cosines

 May 2, 2016
 #1
avatar
0

  

rearrange a b Ánd c fór which ever Angle you want a is always the side opposite the Angle Ánd b Ánd c are the other two

 May 2, 2016
 #2
avatar+129845 
0

Using the Law of Cosines, we can find the angle opposite the longest side thusly :

 

19^2   = 14^2 +  12^2  - 2(14)(12)cosθ      where θ  is the angle we're looking for

 

Rearrange as

 

[19^2 - 14^2 - 12^2]  /  [ -2(14)(12)]  =  cosθ

 

Using the cosine inverse  [arccos], we can find θ

 

θ  = arcos ( [19^2 - 14^2 - 12^2]  /  [ -2(14)(12)] )  = about  93.58°

 

Now.......we can can find a second angle, call it B, using the Law  of Sines

 

sinB / 14  =  sin (93.58) / 19      multiply both sides by 14

 

sin B  =   [14 sin(93.58)/ 19]

 

And using the sine inverse [arcsin]   we can find B

 

B  = arcsin [14 sin(93.58)/ 19]  = about 47.34°

 

And the remaining angle  = [180 -93.58 - 47.34]°  =  about 39.08°

 

 

 

cool cool cool

 May 2, 2016

1 Online Users

avatar