+0  
 
0
47
3
avatar+800 

A nursery determines the demand in May for potted plants in p=3 - (x/1000). The cost of growing x plant is C(x) = 0.02x+400, 0≤ x ≤ 6000. Determine the marginal profit function.

 

a) 2.98x - (x^2/1000) 

b) 2.98 - (x/500) 

c) 2.98x - (x^2/1000) + 400 

d) 2.98 + (x/500)

Julius  Mar 30, 2018
Sort: 

3+0 Answers

 #1
avatar+85673 
+1

Sorry, Julius...I don't know this one...!!!

 

 

cool cool cool

CPhill  Mar 30, 2018
 #2
avatar+333 
+2

Marginal Profit = Marginal Revenue - Marginal Cost

 

Marginal Cost = C'(x) = 0.02

Revenue = No. of Items sold * Price = x * (3 -  (x/1000)) = \(-{x^2\over1000}+3x\)

Marginal Revenue = R'(x) = \(-{x\over500}+3\)

Marginal Profit = \(-{x\over500}+3-0.02\) = \(2.98-{x\over500}\)

 

The answer is letter B smiley

Mathhemathh  Mar 31, 2018
 #3
avatar+85673 
+1

Thanks, Mathhemathh!!!....great answer  !!!

 

 

cool cool cool

CPhill  Mar 31, 2018

10 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details