+0  
 
0
48
1
avatar+800 

A rectangle is to be placed in the first quadrant, with one side on the x-axis and one side on the y-axis so that the rectangle lies below the parabola y=-3x^2+4. What is the maximum area of this rectangle?

 

a) 16/9

b) 3 

c) 2/3 

d) 2 

Julius  Mar 30, 2018
Sort: 

1+0 Answers

 #1
avatar+85759 
+2

Mmmm...let's see if I know this one.....

 

Let the width of the rectangle  = x

And let the height  =  -3x^2 + 4

 

So....the area, A  =  width * height   =  x (-3x^2 + 4) = -3x^3 + 4x

 

Take the derivative of A    and set to  0

 

 

A'   =  -9x^2  +  4

 

-9x^2 +  4  =  0

-9x^2  =   -4          divide both sides by -9

x^2  =  4/9             take the positive root

x = 2/3     =  width

 

And  the height is given  by:

 -3(2/3)^2  + 4   = 

-3(4/9) + 4

-4/3 + 4

8/3

 

So....the max area  is

 

(2/3)(8/3)  =   16/9   units^2

 

 

cool cool cool

CPhill  Mar 30, 2018

25 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details