We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# @CPhill - Fast Please

0
270
1

A rectangle is to be placed in the first quadrant, with one side on the x-axis and one side on the y-axis so that the rectangle lies below the parabola y=-3x^2+4. What is the maximum area of this rectangle?

a) 16/9

b) 3

c) 2/3

d) 2

Mar 30, 2018

### 1+0 Answers

#1
+2

Mmmm...let's see if I know this one.....

Let the width of the rectangle  = x

And let the height  =  -3x^2 + 4

So....the area, A  =  width * height   =  x (-3x^2 + 4) = -3x^3 + 4x

Take the derivative of A    and set to  0

A'   =  -9x^2  +  4

-9x^2 +  4  =  0

-9x^2  =   -4          divide both sides by -9

x^2  =  4/9             take the positive root

x = 2/3     =  width

And  the height is given  by:

-3(2/3)^2  + 4   =

-3(4/9) + 4

-4/3 + 4

8/3

So....the max area  is

(2/3)(8/3)  =   16/9   units^2   Mar 30, 2018