9^3k * 27^3k-1 * 3^k all divided by 81^4k like a fraction
Solve the variable
SHOW ALL WORK
(Doin gr8 Cphill)
9^3k * 27^3k-1 * 3^k all divided by 81^4k like a fraction
\(\;\;\;\frac{9^{3k} * 27^{3k-1} * 3^k }{ 81^{4k} }\\ =\frac{3^{2*3k} * 3^{3(3k-1)} * 3^k }{ 3^{4*4k} }\\ =\frac{3^{6k} * 3^{9k-3} * 3^k }{ 3^{16k} }\\ =3^{6k+9k-3+k-16k}\\ =3^{-3}\\ =\frac{1}{3^3}\\ =\frac{1}{27}\)
[9^(3k) * 27^(3k-1) * 3^k] / 81^(4k)
[ (3^2)^(3k) * (3^3)^(3k - 1) * 3^k] / [3^4]^{4k)
[ 3^(6k) * (3)^(9k - 3) * 3^k ] / [3^16]^k
[ 3^ ( 6k + 9k - 3 + k ) ] / [3^(16k)]
[ 3^(16k - 3) ] / [3^ (16k)]
3^(16k - 3 - 16k) =
3^( -3 )
1 / 27
Now Chris,
You would have seen me working on it before you even started your answer :/