We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

If you do this could you please put and explain every step and how you did it??? Thanks!!!


find each quotient and write it in rectangular form



 Dec 21, 2017


I have asssumed that the angles are in degrees ...which i really should not have done :/

I expect there is a much easier way to do this. Also the question implies there should be more than one answer. My knowledge here is sketchy at best.


\(\frac{12cis293}{6cis23}\\ \qquad cis293\\ \qquad=cis(270+23)\\ \qquad=cos(270+23)+isin(270+23)\\ \qquad=cos(270)cos(23)-sin(270)sin(23)+i[sin(270)cos(23)+cos(270)sin(23)]\\ \qquad=0*cos(23)--1sin(23)+i[-1*cos(23)+0*sin(23)]\\ \qquad=sin(23)+i[-cos(23)]\\ \qquad=sin(23)-i[cos(23)]\\~\\ \frac{12cis293}{6cis23}\\ =\frac{2[sin23-icos23]}{cos23+isin23}\\ =\frac{2[sin23-icos23]}{cos23+isin23}\times \frac{cos23-isin23}{cos23-isin23}\\ =\frac{2[sin23(cos23-isin23) -icos23(cos23-isin23) ]}{cos^223-i^2sin^223}\\ =\frac{2[sin23cos23-isin^223-icos^223+i^2sin23cos23 ]}{cos^223-i^2sin^223}\\ =\frac{2[sin23cos23-isin^223-icos^223-sin23cos23]}{cos^223+sin^223}\\ =\frac{2[sin23cos23-sin23cos23 -isin^223-icos^223]}{1}\\ =2[-i(sin^223+cos^223)\\ =-2i \)



 Dec 21, 2017
edited by Melody  Dec 21, 2017

Melody: I don't pretend to understand this, but "Mathematica 11" gives this answer without any steps or explanation. Sorry about that:


2 (cos(293) + i sin(293)))/(cos(23) + i sin(23))

=2 (cos(270) + i sin(270)), OR

=2 cos(270) + 2 i sin(270)

=2 e^(270 i)

 Dec 21, 2017


If the angles are in degrees then this becomes


2isin270 =2i*-1 = -2i


2cos270+isin270=-2i      (Which is what I got)


But Mathematica's answer, the unsimplified answer,  is much better because the angle should be in radians rather than degrees. 


As far as there being no explanation given by Mathematica, well I am sure there are acceptable short cuts here. My knowledge in this area is limited.

Melody  Dec 21, 2017
edited by Melody  Dec 21, 2017

\(\displaystyle \text{If }z_{1}=r_{1}(\cos\theta_{1}+\imath\sin\theta_{1})\text{ and }z_{2}=r_{2}(\cos\theta_{2}+\imath\sin\theta_{2})\),


\(\displaystyle z_{1}z_{2}=r_{1}r_{2}\{\cos(\theta_{1}+\theta_{2})+\imath\sin(\theta_{1}+\theta_{2})\}\)


\(\displaystyle z_{1}/z_{2}=(r_{1}/r_{2})\{\cos(\theta_{1}-\theta_{2})+\imath\sin(\theta_{1}-\theta_{2})\}\).


To multiply, multiply the moduli and add the arguments, to divide, divide the moduli and subract one argument from the other.

They're both easy to prove using well-known trig identities.


If the numbers are written in exponential form via the identity

\(\displaystyle e^{\imath\theta}=\cos\theta+\imath\sin\theta\),

then the rules can be seen to become, (or), the rules for indices can be used to produce

\(\displaystyle z_{1}z_{2}=r_{1}r_{2}e^{\imath(\theta_{1}+\theta_{2})}\text{ and }z_{1}/z_{2}=(r_{1}/r_{2})e^{\imath(\theta_{1}-\theta_{2})}\).


Applying to the given problem, (cis is just an abbreviation for cos + i.sin),


\(\displaystyle 12\text{cis}293/6\text{cis}23=2\text{cis}270, \text{ (or, alternatively)}\text{ }2e^{\imath270}\).


Mathematica has not been told what the units are so assumes radians, personally though I take the view that the angles are in degrees, (270 degrees or 270 radians ?), in which case the result can be written as

\(\displaystyle 2(\cos270+\sin270)=2(0+\imath(-1))=-2\imath\).



 Dec 21, 2017

ok I have done some homework.


\(cis(A+B)=cis(A)\times cis(B)\qquad \text{From Euler's formula}\\ so\\ \frac{12cis293}{6cis23}=\frac{2cis270cis23}{cis23}=2cis270\\ =2cos270+2isin270\\ =2e^{(270i)} \)



Now I just want to prove this identity.


\(cis(A+B)\\=cos(A+B)+isin(A+B)\\ =cosAcosB-sinAsinB+isinAcosB+icosAsinB\\ =cosAcosB+icosAsinB+isinAcosB-sinAsinB\\ =cosAcosB+icosAsinB+isinAcosB+iisinAsinB\\ =cosA(cosB+isinB)+isinA(cosB+isinB)\\ =(cosA+isinA)(cosB+isinB)\\ =cisA\times cisB\\ QED \)


Now i am happy   laugh

 Dec 21, 2017

Thanks Tiggsy,


It is always great to see you on the forum  laughlaughlaugh

 Dec 21, 2017

8 Online Users