+0  
 
0
83
1
avatar+946 

 

Okay so I got : 

A = (0,0,3) 

E = (4,0,3) 

D = (0,0,-3) 

G= (4,0,-3) 

 

But I can't figure out how to make an equation containing all. Can you help, please?

Julius  May 5, 2018
 #1
avatar+87293 
+2

We need to write the equation of a plane, here, Julius.....

 

Since the prism is bisected  by the xy plane,

Let D  = (0, 0 ,-3 )

Let  A  = (0, 0, 3)

Let E  = (4, 0,3)

Let G   =(4,0,-3)

 

We can form the following  vectors  DG  = (4,0, 0)    and  DE  = (4, 0, 6)

[These aren't the only two possibilities......we just need any two vectors formed by the points]

Note that all the points lie in the xz  plane....so...we need a vector that is orthagonal to this plane

 

The cross-product of the two vectors will be orthagonal to both of these vectors...so we have

 

 

                         i          j           k       i         j

 

DG X DE   =    4         0          0       4        0

         

                        4        0           6       4        0       

 

 ( [ 0 * 6]i   + [ 0 * 4 ] j  + [4 * 0] k   -  (  [ 4 * 0 ] k  + [ 0 *0] i  +  [ 6 * 4]j )   =

 

0i   + 0 j   +  0 k   - 0 k - 0i  - 24 j

 

So....we have

 

0i  -24j - 0k       =  { 0, -24, 0 }    this is the vector  that is orthagonal to both vectors ....[and hence,  the plane containing those vectors]

 

And  the equation of the plane becomes

 

0 (x - 4) -24 (y - 0)  + 0 (z - 3)   =  0

 

-24y    =  0 

 

 

 

cool cool cool

CPhill  May 5, 2018
edited by CPhill  May 5, 2018

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.