+0  
 
0
51
1
avatar+938 

 

Okay so I got : 

A = (0,0,3) 

E = (4,0,3) 

D = (0,0,-3) 

G= (4,0,-3) 

 

But I can't figure out how to make an equation containing all. Can you help, please?

Julius  May 5, 2018
Sort: 

1+0 Answers

 #1
avatar+86643 
+2

We need to write the equation of a plane, here, Julius.....

 

Since the prism is bisected  by the xy plane,

Let D  = (0, 0 ,-3 )

Let  A  = (0, 0, 3)

Let E  = (4, 0,3)

Let G   =(4,0,-3)

 

We can form the following  vectors  DG  = (4,0, 0)    and  DE  = (4, 0, 6)

[These aren't the only two possibilities......we just need any two vectors formed by the points]

Note that all the points lie in the xz  plane....so...we need a vector that is orthagonal to this plane

 

The cross-product of the two vectors will be orthagonal to both of these vectors...so we have

 

 

                         i          j           k       i         j

 

DG X DE   =    4         0          0       4        0

         

                        4        0           6       4        0       

 

 ( [ 0 * 6]i   + [ 0 * 4 ] j  + [4 * 0] k   -  (  [ 4 * 0 ] k  + [ 0 *0] i  +  [ 6 * 4]j )   =

 

0i   + 0 j   +  0 k   - 0 k - 0i  - 24 j

 

So....we have

 

0i  -24j - 0k       =  { 0, -24, 0 }    this is the vector  that is orthagonal to both vectors ....[and hence,  the plane containing those vectors]

 

And  the equation of the plane becomes

 

0 (x - 4) -24 (y - 0)  + 0 (z - 3)   =  0

 

-24y    =  0 

 

 

 

cool cool cool

CPhill  May 5, 2018
edited by CPhill  May 5, 2018

4 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy