+0  
 
0
4
583
8
avatar

how to prove it 

thanks.

Guest Nov 6, 2014

Best Answer 

 #5
avatar+17736 
+10

CPhill's answer is, in the words of one of my instructors, elegant.

That won't be said for mine; more like a brute force attempt:

To make the typing easier,

let  A  =  (9 + 4√5)^(1/3)          --->          A³  =  9 + 4√5

let  B  =  (9 - 4√5)^(1/3)           --->          B³  =  9 - 4√5

Let  X  =  A + B             So, now:  X  = (9 + 4√5)^(1/3) + (9 - 4√5)^(1/3)    (the problem)

Also:   A·B  =  [ (9 + 4√5)^(1/3) ] · [ (9 - 4√5)^(1/3) ]

                 =  [ (9 + 4√5) · (9 - 4√5) ] ^(1/3)

                 =  [ 81 - 16 · 5 ] ^(1/3)

                 =  [ 1 ] ^(1/3)

                 =  1

Since  A·B  =  1,

     A²·B  =  A(AB)  =  A(1)  =  A  =  (9 + 4√5)^(1/3) 

     A·B²  =  (AB)B  =  (1)B  =  B  =  (9 - 4√5)^(1/3) 

Sinc  X  =  A + B,

        X³  =  (A + B)³  =  A³ + 3A²·B + 3A·B² + B³

        X³  =  (9 + 4√5) + [ 3(9 + 4√5)^(1/3) ] + [ 3(9 - 4√5)^(1/3) ] + ( 9 - 4√5 )

Rearranging:

        X³  =  18 + 3[ (9 + 4√5)^(1/3) + (9 - 4√5)^(1/3) ]

        X³  =  18 + 3[ A + B ]

But, since A + B  =  X

       X³  =  18 + X

       X³ - X - 18  =  0

Factoring:

      (X - 3)(X² + 3X + 6)  = 0

So:  X = 3  or X = [-3 ± i√(15) ] / 2

Since the answer is a pure real number, the answer is  3!

geno3141  Nov 6, 2014
 #1
avatar+92623 
0
$$\sqrt[3]{(9+4 \sqrt 5}+\sqrt[3]{(9-4 \sqrt 5} = 3$$

 

Umm I do not know - I'll have to think about this one!

Melody  Nov 6, 2014
 #2
avatar+86859 
+10

This one is tricky.....but note.....(9 + 4√5)^(1/3) = (Phi)2  where Phi = (1 + √5)/2

And (9 -4√5)^(1/3) = phi2 = Phi -2 where Phi -1  = phi = 2/(1 + √5)

So we have

Phi 2 + Phi -2   =

Phi 2 + phi 2       and by a property of Phi and phi......Phi2 = 1 + Phi   and phi2 = 1 - phi ... so we have

(1 + Phi)  + (1 - phi) =

2 + Phi - phi            and by another property of Phi and phi.....Phi - phi = 1    so we have

2 + 1 = 3

 

CPhill  Nov 6, 2014
 #3
avatar+92623 
0

....but note.....(9 + √80)^(1/3) = (Phi)2  where Phi = (1 + √5)/2 

Christ Chris, What archive did you dig that out of !

Melody  Nov 6, 2014
 #4
avatar+86859 
+5

When I evaluated (9  + √80)^(1/3) and (9 - √80)^(1/3), I immediately saw that these were related to Phi and phi.....

 

CPhill  Nov 6, 2014
 #5
avatar+17736 
+10
Best Answer

CPhill's answer is, in the words of one of my instructors, elegant.

That won't be said for mine; more like a brute force attempt:

To make the typing easier,

let  A  =  (9 + 4√5)^(1/3)          --->          A³  =  9 + 4√5

let  B  =  (9 - 4√5)^(1/3)           --->          B³  =  9 - 4√5

Let  X  =  A + B             So, now:  X  = (9 + 4√5)^(1/3) + (9 - 4√5)^(1/3)    (the problem)

Also:   A·B  =  [ (9 + 4√5)^(1/3) ] · [ (9 - 4√5)^(1/3) ]

                 =  [ (9 + 4√5) · (9 - 4√5) ] ^(1/3)

                 =  [ 81 - 16 · 5 ] ^(1/3)

                 =  [ 1 ] ^(1/3)

                 =  1

Since  A·B  =  1,

     A²·B  =  A(AB)  =  A(1)  =  A  =  (9 + 4√5)^(1/3) 

     A·B²  =  (AB)B  =  (1)B  =  B  =  (9 - 4√5)^(1/3) 

Sinc  X  =  A + B,

        X³  =  (A + B)³  =  A³ + 3A²·B + 3A·B² + B³

        X³  =  (9 + 4√5) + [ 3(9 + 4√5)^(1/3) ] + [ 3(9 - 4√5)^(1/3) ] + ( 9 - 4√5 )

Rearranging:

        X³  =  18 + 3[ (9 + 4√5)^(1/3) + (9 - 4√5)^(1/3) ]

        X³  =  18 + 3[ A + B ]

But, since A + B  =  X

       X³  =  18 + X

       X³ - X - 18  =  0

Factoring:

      (X - 3)(X² + 3X + 6)  = 0

So:  X = 3  or X = [-3 ± i√(15) ] / 2

Since the answer is a pure real number, the answer is  3!

geno3141  Nov 6, 2014
 #6
avatar+92623 
0

Thanks Chris and Gino :)))

Melody  Nov 7, 2014
 #7
avatar+86859 
0

Very nice, Geno.....I would dispute that mine is more "elegant"....more like...."calculator aware".... LOL!!!

(Plus.....a little knowledge about the proprties of Phi and phi....!!)

 

CPhill  Nov 7, 2014
 #8
avatar+92623 
0

Yea well - it is all still too much for me LOL  :)))

Melody  Nov 8, 2014

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.